信息网络安全 ›› 2021, Vol. 21 ›› Issue (11): 85-94.doi: 10.3969/j.issn.1671-1122.2021.11.010

• 理论研究 • 上一篇    下一篇

基于TCN和注意力机制的异常检测和定位算法

吴佳洁1, 吴绍岭2, 王伟1()   

  1. 1.华东师范大学数据科学与工程学院,上海 200062
    2.同济大学计算机科学与技术系,上海 201804
  • 收稿日期:2020-05-06 出版日期:2021-11-10 发布日期:2021-11-24
  • 通讯作者: 王伟 E-mail:wwang@dase.ecnu.edu.cn
  • 作者简介:吴佳洁(1996—),女,浙江,硕士研究生,主要研究方向为异常检测|吴绍岭(1994—),男,山东,硕士研究生,主要研究方向为容器虚拟化技术|王伟(1979—),男,湖北,研究员,博士,主要研究方向为开源系统论、复杂信息网络
  • 基金资助:
    国家自然科学基金(61672384)

An Anomaly Detection and Location Algorithm Based on TCN and Attention Mechanism

WU Jiajie1, WU Shaoling2, WANG Wei1()   

  1. 1. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
    2. Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
  • Received:2020-05-06 Online:2021-11-10 Published:2021-11-24
  • Contact: WANG Wei E-mail:wwang@dase.ecnu.edu.cn

摘要:

随着云计算时代的到来,应用上云已经成为主流的系统部署方案。为了满足业务需求,很多系统都在混合云环境采用微服务架构。系统本身的复杂性和运行环境的复杂性使得实时监控和运维数据处理、异常检测及定位都变得困难。文章设计了一个面向复杂云系统的实时监控和数据处理框架,同时提出了一种基于TCN和注意力机制的异常检测算法(TCN-AT)。前者可在复杂云环境的微服务系统中运行,后者用于时间序列数据中的点异常和窗口异常检测。文章在仿真数据、真实的微服务系统数据和开源的比赛数据上进行了大量实验,结果表明TCN-AT的性能优于其他前沿算法。

关键词: TCN, 异常检测, 异常定位, 微服务系统

Abstract:

With the development of cloud computing, the application of cloud has become the mainstream system deployment scheme. In order to meet the commercial needs, many systems adopt the micro service architecture and deploy to the hybrid cloud environment. The complexity of the system and the complexity of the operating environment make real-time monitoring and operation data processing, anomaly detection and location difficult. In this paper, we designed a real-time monitoring and data processing framework for complex cloud system. We proposed an anomaly detection algorithm based on TCN and attention mechanism (TCN-AT). The former is suitable for micro service system running in complex cloud environment, while the latter is used for point anomaly and window anomaly detection in time series data. A large number of experiments on simulation data, real microservice system data and open source data show that TCN-AT is superior to other state of art algorithms.

Key words: TCN, anomaly detection, anomaly location, microservice system

中图分类号: