信息网络安全 ›› 2021, Vol. 21 ›› Issue (1): 10-18.doi: 10.3969/j.issn.1671-1122.2021.01.002

• 技术研究 • 上一篇    下一篇

基于TD-ERCS序列的S盒非线性度优化算法

张雪锋1, 卫凯莉1(), 姜文2   

  1. 1.西安邮电大学网络空间安全学院,西安 710121
    2.国家计算机网络应急技术处理协调中心,北京 100029
  • 收稿日期:2020-08-19 出版日期:2021-01-10 发布日期:2021-02-23
  • 通讯作者: 卫凯莉 E-mail:2863045812@qq.com
  • 作者简介:张雪锋(1975—),男,陕西,教授,博士,主要研究方向为信息安全、图像加密和生物识别|卫凯莉(1996—),女,山西,硕士研究生,主要研究方向为分组密码算法和图像加密|姜文(1983—),男,安徽,高级工程师,博士,主要研究方向为信息安全和工业互联网安全
  • 基金资助:
    陕西省自然科学基础研究计划(2017JQ6010);陕西省教育厅专项科学研究计划(18JK0717)

The Nonlinearity Optimization Algorithm of S-box Based on TD-ERCS Sequence

ZHANG Xuefeng1, WEI Kaili1(), JIANG Wen2   

  1. 1. College of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;
    2. National Internet Emergency Center, Beijing 100029, China
  • Received:2020-08-19 Online:2021-01-10 Published:2021-02-23
  • Contact: WEI Kaili E-mail:2863045812@qq.com

摘要:

针对基于混沌系统生成的S盒存在非线性度较低等问题,文章针对基于切延迟椭圆反射腔映射系统(TD-ERCS)生成S盒的方法,首先证明了生成的S盒具有双射性,在此基础上,设计了一种改进的爬山算法,通过动态缩小布尔函数Walsh-Hadamard变换(WHT)的选取范围,将满足条件的6个布尔值进行取反运算,有效提升了双射S盒非线性度。理论和实验仿真分析表明,采用优化算法生成的S盒性能得到了有效提升,在算法效率、非线性度、严格雪崩准则和差分逼近概率等方面具备更好的性能。

关键词: TD-ERCS, 双射性, 非线性度

Abstract:

Aiming at the problems that the S-boxes generated by chaotic systems have lower nonlinearity, in this paper, aims at the method of generating S-boxes based on a mapping system of tangent-delay ellipse reflecting cavity(TD-ERCS), proves the S-boxes have bijection firstly. On this basis, an improved hill-climbing algorithm is designed. By dynamically reducing the selection ranges of Walsh-Hadamard transform(WHT) of Boolean functions, and inverting six Boolean values satisfying the conditions, the nonlinearities of bijective S-boxes are improved. Theoretical and experimental simulation analysis shows that, the performance of S-boxes generated by optimization algorithm is improved effectively, and has better performance in algorithm efficiency, nonlinearity, strict avalanche criterion and differential approximation probability.

Key words: TD-ERCS, bijection, nonlinearity

中图分类号: