信息网络安全 ›› 2025, Vol. 25 ›› Issue (4): 524-535.doi: 10.3969/j.issn.1671-1122.2025.04.002

• 专题论文:智能系统安全 • 上一篇    下一篇

基于知识蒸馏的医疗诊断差分隐私方法研究

李骁, 宋晓(), 李勇   

  1. 北京航空航天大学网络空间安全学院,北京 100191
  • 收稿日期:2024-11-25 出版日期:2025-04-10 发布日期:2025-04-25
  • 通讯作者: 宋晓 songxiao@buaa.edu.cn
  • 作者简介:李骁(2002—),男,黑龙江,博士研究生,主要研究方向为知识图谱、差分隐私、大语言模型|宋晓(1976—),男,四川,教授,博士,主要研究方向为深度学习与强化学习、工业互联网安全、航天装备建模与仿真|李勇(1993—),男,湖北,博士研究生,主要研究方向为差分隐私算法、深度学习
  • 基金资助:
    北京市自然科学基金-小米创新联合基金(L233005)

Research on Differential Privacy Methods for Medical Diagnosis Based on Knowledge Distillation

LI Xiao, SONG Xiao(), LI Yong   

  1. School of Cyber Science and Technology, Beihang University, Beijing 100191, China
  • Received:2024-11-25 Online:2025-04-10 Published:2025-04-25

摘要:

随着智能医疗系统的快速发展,标注数据的匮乏已成为制约研究进展的关键因素之一,知识蒸馏作为一种有效的数据利用策略能够缓解这一问题。然而,在智能医疗领域,模型通常用于替代人工进行影像、数据的诊断,这不仅对医疗信息隐私保护提出了更高要求,还强调了模型精度对诊断结果准确性的决定性影响。因此,文章提出一种结合差分隐私的知识蒸馏方案,并将其应用于图神经网络模型,在知识蒸馏过程中保护用户敏感信息的同时,确保较高的医疗诊断准确率。为验证所提方法的有效性,文章构建了图注意力网络(GAT)模型和卷积神经网络(CNN)模型作为对照组,并采用3种实际医疗图像数据集进行实验。结果表明,文章所提方法在GAT模型的准确率较在CNN模型的准确率有所提升,对应在3个数据集上分别由61%提升至68%、83%提升至93%、67%提升至80%。鉴于GAT模型的高资源开销,文章进一步设计了一种轻量化GAT模型架构。该轻量化模型在显著降低资源消耗的同时,仍保持优于CNN模型的分类性能,从而在差分隐私保护的前提下,有效提升医疗诊断效果。

关键词: 知识蒸馏, 差分隐私, 图神经网络, 智能医疗, 轻量化

Abstract:

With the rapid development of intelligent medical systems, the lack of labeled data has become a key factor restricting research progress. Knowledge distillation, as an effective data utilization strategy, can alleviate this problem. However, in intelligent medical field, models are usually used to replace manual diagnosis of images and data. This not only puts forward higher requirements for the protection of medical information privacy, but also emphasizes the decisive impact of model accuracy on the accuracy of diagnostic results.Therefore, this paper proposed a knowledge distillation scheme combined with differential privacy, and applied it to graph neural network models, aiming to protect users’ sensitive information in the knowledge distillation process while ensuring high medical diagnostic accuracy. To verify the effectiveness of the proposed method, this paper constructed a graph attention network (GAT) model and a convolutional neural network (CNN) model as control groups, and conducted experimental verification using three practical medical image datasets. The experimental results show that the accuracy of the GAT model proposed in this paper is higher than that of the CNN model, which is improved from 61% to 68%, 83% to 93%, and 67% to 80% on the three datasets respectively. Given the high resource overhead of the GAT model, this paper further designed a lightweight GAT model architecture. The lightweight model significantly reduces resource consumption while maintaining classification performance superior to the CNN model, thereby effectively improving medical diagnostic outcomes under the premise of differential privacy protection.

Key words: knowledge distillation, differential privacy, graph neural networks, intelligent healthcare, lightweight

中图分类号: