信息网络安全 ›› 2025, Vol. 25 ›› Issue (4): 509-523.doi: 10.3969/j.issn.1671-1122.2025.04.001
收稿日期:2025-02-10
出版日期:2025-04-10
发布日期:2025-04-25
通讯作者:
毕悦 作者简介:李涛(1984—),男,江苏,副教授,博士,主要研究方向为信息系统安全、内生安全|毕悦(2000—),女,重庆,硕士研究生,主要研究方向为数据安全、内部威胁检测|胡爱群(1964—),男,江苏,教授,博士,主要研究方向为网络与信息安全、物理层安全技术
基金资助:
LI Tao1,2,3, BI Yue1(
), HU Aiqun1,2,3
Received:2025-02-10
Online:2025-04-10
Published:2025-04-25
摘要:
在智能系统安全领域,异常检测尤其是内部威胁的识别是一项极具挑战性的任务。现有方法通常依赖预定义规则或时序建模学习,但在面对未知威胁模式时存在局限,且难以充分挖掘日志数据的深层特征。针对这一问题,文章提出一种基于 Transformer 编码器(Trans-Encoder)与长短期记忆网络(LSTM)融合的内部威胁检测方法,旨在仅使用正常类数据训练实现日志中隐蔽异常的高效识别。首先,文章提出的方法通过改进 Transformer 编码器结构,增加屏蔽机制,从而增强了从多源日志数据中提取特征的能力。然后,应用 LSTM 进行时间序列建模,以捕捉提取特征之间的时间相关性,从而提高模型分析顺序依赖关系的能力。最后,计算预测值与对应特征值的差异度,并与阈值进行对比,以判断是否为异常操作。实验结果表明,该方法在内部威胁检测任务上的性能优于现有方法,其准确率提高1.5%,召回率提高4.8%,F1分数提高1.3%,在仅有10%训练数据的情况下,仍能保持稳定性能。此外,在训练阶段和测试阶段的计算效率都高于MTSAD,验证了其在智能系统安全中的应用潜力,为提升系统防护能力提供了一种高效可靠的解决方案。
中图分类号:
李涛, 毕悦, 胡爱群. 面向智能系统的内部威胁多源日志分析与检测方法[J]. 信息网络安全, 2025, 25(4): 509-523.
LI Tao, BI Yue, HU Aiqun. Insider Threat Multi-Source Log Analysis and Detection Method for Intelligent Systems[J]. Netinfo Security, 2025, 25(4): 509-523.
表4
不同方法的性能比较
| 数据集 | 方法 | Deeplog | USAD | UCAD | MTSAD | TE-LSTM |
|---|---|---|---|---|---|---|
| HDFS | Precision | 0.8110 | 0.7945 | 0.7751 | 0.8191 | 0.8340 |
| Recall | 0.9199 | 0.8692 | 0.9181 | 0.9206 | 0.9689 | |
| F1-score | 0.8621 | 0.8503 | 0.8406 | 0.8833 | 0.8964 | |
| BGL | Precision | 0.8974 | 0.7697 | 0.9045 | 0.8843 | 0.9104 |
| Recall | 0.8278 | 0.9831 | 0.9583 | 0.9154 | 0.9778 | |
| F1-score | 0.8612 | 0.8186 | 0.9306 | 0.9097 | 0.9314 |
| [1] | LIANG Xiao, GUI Xiaolin, DAI Haojun, et al. Research on Cache Side Channel Attack Technology of Virtual Machines in Cloud Environment[J]. Chinese Journal of Computers, 2017, 40(2): 317-336. |
| [2] | Verizon. 2023 Data Breach Investigations Report[EB/OL]. [2025-01-20]. https://www.verizon.com/business/resources/T2b1/reports/2023-data-breach-investigations-report-dbir.pdf. |
| [3] | AKASH T, JAYAN A, GAUR N, et al. Identifying Insider Cyber Threats Using Behaviour Modelling and Analysis[C]// IEEE. 2023 OITS International Conference on Information Technology (OCIT). New York: IEEE, 2023: 35-40. |
| [4] | LE D C, ZINCIR-HEYWOOD A N. Evaluating Insider Threat Detection Workflow Using Supervised and Unsupervised Learning[C]// IEEE. 2018 IEEE Security and Privacy Workshops (SPW). New York: IEEE, 2018: 270-275. |
| [5] | MENG Fanzhi, LU Peng, LI Junhao, et al. GRU and Multi-Autoencoder Based Insider Threat Detection for Cyber Security[C]// IEEE. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). New York: IEEE, 2021: 203-210. |
| [6] | TIAN Zhihong, SHI Wei, TAN Zhiyuan, et al. Deep Learning and Dempster-Shafer Theory Based Insider Threat Detection[J]. Mobile Networks and Applications, 2020: 1-10. |
| [7] | YUAN Shuhan, WU Xintao. Deep Learning for Insider Threat Detection: Review, Challenges and Opportunities[EB/OL]. (2021-05-01)[2025-01-20]. https://doi.org/10.1016/j.cose.2021.102221. |
| [8] | TUOR A, KAPLAN S, HUTCHINSON B, et al. Deep Learning for Unsupervised Insider Threat Detection in Structured Cybersecurity Data Streams[EB/OL]. (2017-10-02)[2025-01-20]. https://arxiv.org/abs/1710.00811. |
| [9] | ELDARDIRY H, BART E, LIU Juan, et al. Multi-Domain Information Fusion for Insider Threat Detection[C]// IEEE. 2013 IEEE Security and Privacy Workshops. New York: IEEE, 2013: 45-51. |
| [10] | ZHANG Lili, XIE Yuxiang, LUAN Xidao, et al. Multi-Source Heterogeneous Data Fusion[C]// IEEE. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). New York: IEEE, 2018: 47-51. |
| [11] | LEE S, PARK S, HONG K. RDFNet: RGB-D Multi-Level Residual Feature Fusion for Indoor Semantic Segmentation[C]// IEEE. 2017 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2017: 4990-4999. |
| [12] | BILINSKI P, PRISACARIU V. Dense Decoder Shortcut Connections for Single-Pass Semantic Segmentation[C]// IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 6596-6605. |
| [13] | LE V H, ZHANG Hongyu. Log-Based Anomaly Detection without Log Parsing[C]// IEEE. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). New York: IEEE, 2021: 492-504. |
| [14] | LIU Shuo, XU Liwen, WANG Jinru, et al. LCR-GAN: Learning Crucial Representation for Anomaly Detection[C]// ACM. 2021 5th International Conference on Computer Science and Artificial Intelligence. New York: ACM, 2021: 162-167. |
| [15] | WU Shuguang, WANG Hongyan, WANG Yu, et al. Technology Analysis of Network Anomalous Behavior Detection Based on Machine Learning[C]// IEEE. Proceedings of the 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). New York: IEEE, 2022: 730-737. |
| [16] | MAO Sheng, GUO Jiansheng, GU Taoyong, et al. Dis-AE-LSTM: Generative Adversarial Networks for Anomaly Detection of Time Series Data[C]// IEEE. 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). New York: IEEE, 2020: 330-336. |
| [17] | SAID E M, LE-KHAC N A, DEV S, et al. Network Anomaly Detection Using LSTM Based Autoencoder[C]// ACM. Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks. New York: ACM, 2020: 37-45. |
| [18] | XUE Yapeng. Research on Time Series Anomaly Detection Based on Graph Neural Network[C]// IEEE. 2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE). New York: IEEE, 2023: 1670-1674. |
| [19] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need[J]. Neural Information Processing Systems, 2017, 30: 5998-6008. |
| [20] | YIN Chuanlong, ZHU Yuefei, FEI Jinlong, et al. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks[J]. IEEE Access, 2017, 5: 21954-21961. |
| [21] | XU Wei, HUANG Ling, FOX A, et al. Detecting Large-Scale System Problems by Mining Console Logs[C]// ACM. Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. New York: ACM, 2009: 117-132. |
| [22] | XU Wei, HUANG Ling, FOX A, et al. Online System Problem Detection by Mining Patterns of Console Logs[C]// IEEE. 2009 Ninth IEEE International Conference on Data Mining. New York: IEEE, 2009: 588-597. |
| [23] | LOU Jianguang, FU Qiang, YANG Shengqi, et al. Mining Invariants from Console Logs for System Problem Detection[J]. IEEE Transactions on Computers, 2010, 59(6): 759-774. |
| [24] | OLINER A, STEARLEY J. What Supercomputers Say: A Study of Five System Logs[C]// IEEE. The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07). New York: IEEE, 2007: 575-584. |
| [25] | DU Min, LI Feifei, ZHENG Guineng, et al. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning[C]// ACM. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1285-1298. |
| [26] | AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: UnSupervised Anomaly Detection on Multivariate Time Series[C]// ACM. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 3395-3404. |
| [27] | LI Sainan, YIN Qilei, LI Guoliang, et al. Unsupervised Contextual Anomaly Detection for Database Systems[C]// ACM. Proceedings of the 2022 International Conference on Management of Data. New York: ACM, 2022: 788-802. |
| [28] | SOWMYA K, RAMESH K. Enhancing Anomaly Detection in Multivariate Time Series with Stacked Transformer Encoders and Adaptive Positional Embeddings[EB/OL]. (2024-12-06)[2025-01-20]. https://doi.org/10.1007/s13369-024-09821-w. |
| [1] | 杨梦华, 易军凯, 朱贺军. 基于CNN-LSTM算法的内部威胁检测方法[J]. 信息网络安全, 2025, 25(2): 327-336. |
| [2] | 张光华, 闫风如, 张冬雯, 刘雪峰. 基于LSTM-Attention的内部威胁检测模型[J]. 信息网络安全, 2022, 22(2): 1-10. |
| [3] | 靳姝婷, 何泾沙, 朱娜斐, 潘世佳. 基于本体推理的隐私保护访问控制机制研究[J]. 信息网络安全, 2021, 21(8): 52-61. |
| [4] | 黄娜, 何泾沙, 吴亚飚, 李建国. 基于LSTM回归模型的内部威胁检测方法[J]. 信息网络安全, 2020, 20(9): 17-21. |
| [5] | 王媛媛, 范潮钦, 苏玉海. 面向聊天记录的语义分析研究[J]. 信息网络安全, 2017, 17(9): 89-92. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||