信息网络安全 ›› 2025, Vol. 25 ›› Issue (4): 509-523.doi: 10.3969/j.issn.1671-1122.2025.04.001

• 专题论文:智能系统安全 • 上一篇    下一篇

面向智能系统的内部威胁多源日志分析与检测方法

李涛1,2,3, 毕悦1(), 胡爱群1,2,3   

  1. 1.东南大学网络空间安全学院,南京 214135
    2.网络通信与安全紫金山实验室,南京 211111
    3.东南大学移动信息通信与安全前沿科学中心,南京 214135
  • 收稿日期:2025-02-10 出版日期:2025-04-10 发布日期:2025-04-25
  • 通讯作者: 毕悦 220225029@seu.edu.cn
  • 作者简介:李涛(1984—),男,江苏,副教授,博士,主要研究方向为信息系统安全、内生安全|毕悦(2000—),女,重庆,硕士研究生,主要研究方向为数据安全、内部威胁检测|胡爱群(1964—),男,江苏,教授,博士,主要研究方向为网络与信息安全、物理层安全技术
  • 基金资助:
    国家自然科学基金(52233003);中央高校基本科研业务费(2242022k60005)

Insider Threat Multi-Source Log Analysis and Detection Method for Intelligent Systems

LI Tao1,2,3, BI Yue1(), HU Aiqun1,2,3   

  1. 1. School of Cyberspace Security, Southeast University, Nanjing 214135, China
    2. Purple Mountain Laboratory of Network Communication and Security, Nanjing 211111, China
    3. Frontier Science Centre for Mobile Information Communication and Security, Southeast University, Nanjing 214135, China
  • Received:2025-02-10 Online:2025-04-10 Published:2025-04-25

摘要:

在智能系统安全领域,异常检测尤其是内部威胁的识别是一项极具挑战性的任务。现有方法通常依赖预定义规则或时序建模学习,但在面对未知威胁模式时存在局限,且难以充分挖掘日志数据的深层特征。针对这一问题,文章提出一种基于 Transformer 编码器(Trans-Encoder)与长短期记忆网络(LSTM)融合的内部威胁检测方法,旨在仅使用正常类数据训练实现日志中隐蔽异常的高效识别。首先,文章提出的方法通过改进 Transformer 编码器结构,增加屏蔽机制,从而增强了从多源日志数据中提取特征的能力。然后,应用 LSTM 进行时间序列建模,以捕捉提取特征之间的时间相关性,从而提高模型分析顺序依赖关系的能力。最后,计算预测值与对应特征值的差异度,并与阈值进行对比,以判断是否为异常操作。实验结果表明,该方法在内部威胁检测任务上的性能优于现有方法,其准确率提高1.5%,召回率提高4.8%,F1分数提高1.3%,在仅有10%训练数据的情况下,仍能保持稳定性能。此外,在训练阶段和测试阶段的计算效率都高于MTSAD,验证了其在智能系统安全中的应用潜力,为提升系统防护能力提供了一种高效可靠的解决方案。

关键词: 内部威胁检测, 用户行为分析, 语义分析, 时序分析

Abstract:

In the field of intelligent system security, the anomaly detection domain, especially the identification of insider threats, is a challenging task. Existing methods usually rely on predefined rules or temporal modelling learning, but are prone to limitations when facing unknown threat patterns, and it is difficult to fully explore the deep features of log data. To address this problem, this paper proposed an insider threat detection method based on the fusion of Transformer Encoder (Trans-Encoder) and Long Short-Term Memory (LSTM) networks, aiming to achieve efficient identification of hidden anomalies in logs by using only normal class data for training. Firstly, the method proposed in this paper enhanced the ability to extract features from multi-source log data by improving the Transformer encoder structure and adding a masking mechanism. Then LSTM was applied for time series modelling to capture the temporal correlation between the extracted features, which improved the model’s ability to analyze sequential dependencies. Finally, the degree of difference between the predicted value and the corresponding feature value was calculated and compared with the threshold value to determine whether the operation was anomalous or not. The experimental results show that the method outperforms the existing state-of-the-art methods on the insider threat detection task, with a 1.5% improvement in Precision, a 4.8% improvement in Recall, a 1.3% improvement in F1-score, and a stable performance with only 10% training data. In addition, the computational efficiency is higher than that of MTSAD in both the training and testing phases, which verifies its potential application in intelligent system security and provides an efficient and reliable solution for improving system protection.

Key words: insider threat detection, user behavior analysis, semantic analysis, temporal analysis

中图分类号: