信息网络安全 ›› 2024, Vol. 24 ›› Issue (1): 150-159.doi: 10.3969/j.issn.1671-1122.2024.01.015
收稿日期:
2023-08-12
出版日期:
2024-01-10
发布日期:
2024-01-24
通讯作者:
贾洪勇
E-mail:hyjia@zzu.edu.cn
作者简介:
王君艳(1997—),女,河南,硕士研究生,主要研究方向为物联网安全、深度学习|伊鹏(1977—),男,河南,研究员,博士,主要研究方向为网络内生安全、入侵检测、新型网络体系结构|贾洪勇(1975—),男,河南,讲师,博士,主要研究方向为云计算安全、物联网系统、零信任安全|张建辉(1977—),男,河南,副研究员,博士,主要研究方向为新型网络体系结构、网络路由技术、网络数据分析与安全管控
基金资助:
WANG Junyan1, YI Peng2, JIA Hongyong1(), ZHANG Jianhui1,3
Received:
2023-08-12
Online:
2024-01-10
Published:
2024-01-24
Contact:
JIA Hongyong
E-mail:hyjia@zzu.edu.cn
摘要:
物联网异构终端数量大、结构简单、安全防护能力弱,容易成为攻击目标。针对传统风险评估方法处理不断变化的大量风险因素时,评估机制建立困难,评估效率不高的问题,文章提出基于改进卷积自动编码器的物联网终端风险评估模型(Lightweight Convolutional Autoencoder Combined with Fully Connected Layers and Classifier Model,LCAE-FC)。将更轻量化卷积自动编码器与分类器结合构建模型,使高维特征学习与逐阶降维输出评估概率值一体化;编码器引入深度可分离卷积,每个通道学习广义行为特征内部结构;每个输出特征均进行平均池化,最大限度保留风险信息;全连接层与分类器结合将高维特征抽象后阶梯式降维输出风险概率值。N-BaIoT数据集上的实验结果显示,文章所提模型精确度和F1值均高达99.3%以上,相较传统的CAE、Bi-LSTM和SAE-SBR模型,性能更优。
中图分类号:
王君艳, 伊鹏, 贾洪勇, 张建辉. 基于改进CAE的物联网终端风险评估模型[J]. 信息网络安全, 2024, 24(1): 150-159.
WANG Junyan, YI Peng, JIA Hongyong, ZHANG Jianhui. IoT Terminal Risk Assessment Model Based on Improved CAE[J]. Netinfo Security, 2024, 24(1): 150-159.
表1
N-BaIoT 数据集特征详细信息
数据来源 | 数据 | 统计量 | 总数/个 |
---|---|---|---|
Source IP | Packet size(only outbound) | Mean, variance | 3 |
Packet count(only outbound) | Integer | ||
Source MAC-IP | Packet size(only outbound) | Mean, variance | 3 |
Packet count | Integer | ||
Channel | Packet size(only outbound) | Mean, variance | 10 |
Packet count | Integer | ||
Amount of time betweenpacket arrivals | Mean, variance, | ||
Packet size(both inbound and outbound) | Magnitude, radius, covariance, correlation coefficient | ||
Socket | Packet size(only outbound) | Mean, variance | 7 |
Packet count | Integer | ||
Packet size(both inbound and outbound) | Magnitude, radius, covariance, correlation coefficient |
表2
LCAE-FC结构
层 | 各层输出大小 | 参数量/个 |
---|---|---|
Input1 | (115,0) | 0 |
DephwiseConv1D | (115,1) | 129 |
SeparableConv1D | (115,32) | 96 |
GlobalAveragePooling1D | (None,32) | 0 |
Deconv1DTranspose | (115,32) | 2080 |
Deconv1DTranspose | (115,64) | 4160 |
Deconv1DTranspose | (115,115) | 14835 |
Flatten | (None,32) | 0 |
Dense | (None,115) | 3795 |
Dense | (None,64) | 7424 |
Dense | (None,32) | 2080 |
Dense | (None,1) | 33 |
合计 | — | 34632 |
表3
LCAE-FC参数设置
层 | 参数设置 |
---|---|
DephwiseConv1D | Kernel_size:2,num_filters:64,activation:relu,padding: same |
SeparableConv1D | Kernel_size:2,num_filters:32, activation:relu,padding: same |
GlobalAveragePooling1D | data_format=channels_last |
Conv1DTranspose | filters=32, kernel_size=2, activation=relu padding=same, |
Conv1DTranspose | filters=64, kernel_size=2, activation=relupadding=same, |
Conv1DTranspose | filters=115, kernel_size=2, padding=same, activation=linear |
Dense | activation=relu |
Dense | activation=relu |
Dense | activation=relu |
Dense | activation=sigmoid |
epoch | 200 |
batch_size | 100 |
表5
CAE结构与参数
层 | 各层输出大小 | 参数/个 |
---|---|---|
Input1 | (115,0) | 0 |
Conv1D | (115,64) | 14784 |
MaxPooling1D | (57, 64) | 0 |
Conv1D | (57, 32) | 4128 |
MaxPooling1D | (28, 32) | 0 |
Deconv1D | (28, 32) | 2080 |
UpSampling1D | (57, 32) | 0 |
Deconv1D | (57,64) | 4160 |
UpSampling1D | (115,64) | 0 |
Deconv1D | (115,115) | 14755 |
Flatten | (None,32) | 0 |
Dense | (115,0) | 1539115 |
Dense | (None,64) | 741504 |
Dense | (None,32) | 2080 |
Dense | (None,1) | 33 |
合计 | — | 2322639 |
[1] | LIN Meiyu, WANG Yazhong. Research on Security Capability of IoT Terminal[J]. Information and Communication Technology and Policy, 2020, (10): 93-96. |
林美玉, 王亚忠. 物联网终端安全能力研究[J]. 信息通信技术与政策, 2020, (10): 93-96. | |
[2] | CHEN Lin, CUI Tao. Research on Terminal Security in Massive Machine Communication Scenarios[J]. Information and Communication Technology and Policy, 2021, (12): 93-96. |
陈琳, 崔涛. 海量机器类通信场景终端安全问题研究[J]. 信息通信技术与政策, 2021, (12): 93-96. | |
[3] |
MARUDHADEVI D, DHATCHAYANI V N, SRIRAM V S S. A Trust Evaluation Model for Cloud Computing Using Service Level Agreement[J]. The Computer Journal, 2014, 58(10): 2225-2232.
doi: 10.1093/comjnl/bxu129 URL |
[4] | JOSANG A. Subjective Logic: A Formalism for Reasoning Under Uncertainty[M]. Springer: Nature, 2016. |
[5] | FENG Jingyu, YU Tingting, WANG Ziying, et al. Edge Zero Trust Model Against Lost Terminal Threat in Power Iot Scenario[J]. Journal of Computer Research and Development, 2022, 59(5): 1120-1132. |
冯景瑜, 于婷婷, 王梓莹, 等. 电力物联场景下抗失陷终端威胁的边缘零信任模型[J]. 计算机研究与发展, 2022, 59(5): 1120-1132. | |
[6] | WANG Jingwen, JING Xuyang, YAN Zhengyan, et al. A Survey on Trust Evaluation Based on Machine Learning[J]. ACM Computing Surveys, 2020, 53(5): 1-36. |
[7] | ALHANDI S A, KAMALUDIN H, ALDUAIS N A M. Trust Evaluation Model in IoT Environment: A Comprehensive Survey[J]. IEEE Access, 2023: 11165-11182 |
[8] | TANG Xianzhi, DING Chunyan. Information Security Terminal Architecture of Power Transportation Mobile Internet of Things Based on Big Data Analysis[J]. Wireless Communications and Mobile Computing, 2021, 2021: 1-9. |
[9] | ZHAO Yifan. Application of Machine Learning in Network Security Situational Awareness[C]// IEEE.2021 World Conference on Computing and Communication Technologies. New York: IEEE, 2021: 39-46. |
[10] |
ABBASI M, SHAHRAKI A, TAHERKORDI A. Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey[J]. Computer Communications, 2021, 170: 19-41.
doi: 10.1016/j.comcom.2021.01.021 URL |
[11] | LI Da, FUXingzhen, ZANYanzhu. MPTEM: A Reliable Trust Evaluation Model for Forest IoT System[C]/IEEE. 2022 7th International Conference on Computer and Communication Systems. New York: IEEE, 2022: 690-694. |
[12] | BERGAMASCO L, SAHA S, BOVOLO F, et al. Unsupervised Change-Detection Based on Convolutional-Autoencoder Feature Extraction[C]// SPIE. 2019, Image and Signal Processing for Remote Sensing XXV. Edinburgh: SPIE, 2019: 352-332. |
[13] |
JAYASINGHE U, LEE G M, UM T-W, et al. Machine Learning Based Trust Computational Model for IoT Services[J]. IEEE Transactions on Sustainable Computing, 2019, 4(1): 39-52.
doi: 10.1109/TSUSC.2018.2839623 URL |
[14] | HE Chaoxun, PENG Weifeng, LI Yanfei, et al. Improved on Service Trust Model Based on Machine Learning[J]. Computer Engineering and Design, 2022(5): 1335-1343. |
何超勋, 彭伟锋, 李燕飞, 等. 基于机器学习的改进型物联网服务信任模型[J]. 计算机工程与设计, 2022(5): 1335-1343. | |
[15] | LIAO Junkai, CHENG Yongxin, ZHANG Jianhui. Construction of Access Control System Based on Dynamic Trust[J]. Communications Technology, 2022(4): 473-479. |
廖竣锴, 程永新, 张建辉. 基于动态信任的接入管控体系构建[J]. 通信技术, 2022(4): 473-479. | |
[16] |
LIU Liang, XU Xiangyu, LIU Yulei, et al. A Detection Framework Against CPMA Attack Based on Trust Evaluation and Machine Learning in IoT Network[J]. IEEE Internet of Things Journal, 2021, 8(20): 15249-15258.
doi: 10.1109/JIOT.2020.3047642 URL |
[17] | KHAN M A, ALGHAMDI N S. A Neutrosophic WPM-Based Machine Learning Model for Device Trust in Industrial Internet of Things[J]. Journal of Ambient Intelligence and Humanized Computing, 2023: 3003-3017 |
[18] | FRAGKOS G, JOHNSON J, TSIROPOULOU E. Dynamic Role-Based Access Control Policy for Smart Grid Applications: An Offline Deep Reinforcement Learning Approach[J]. IEEE Transactions on Human-Machine Systems, 2022: 1-13. |
[19] |
ALGHOFAILI Y, RASSAM M A. A Trust Management Model for IoT Devices and Services Based on the Multi-Criteria Decision-Making Approach and Deep Long Short-Term Memory Technique[J]. Sensors, 2022, 22(2): 634-660.
doi: 10.3390/s22020634 URL |
[20] |
MA Wei, WANG Xing, HU Mingsheng, et al. Machine Learning Empowered Trust Evaluation Method for IoT Devices[J]. IEEE Access, 2021, 9: 65066-65077.
doi: 10.1109/ACCESS.2021.3076118 URL |
[21] |
RAO M, CHAUDHARY P, SHEORAN K, et al. A Secure Routing Protocol Using Hybrid Deep Regression Based Trust Evaluation and Clustering for Mobile Ad-Hoc Network[J]. Peer-to-Peer Networking and Applications, 2023, 16(6): 2794-2810.
doi: 10.1007/s12083-023-01560-3 |
[22] |
MEIDAN Y, BOHADANA M, MATHOV Y, et al. N-Baiot—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders[J]. IEEE Pervasive Computing, 2018, 17(3): 12-22.
doi: 10.1109/MPRV.2018.03367731 URL |
[1] | 顾兆军, 杨睿, 隋翯. 面向网络架构的系统攻击面建模方法[J]. 信息网络安全, 2022, 22(3): 29-38. |
[2] | 黄波, 秦玉海, 刘旸, 季铎. 基于通用攻击树的脆弱性评估与风险概率研究[J]. 信息网络安全, 2022, 22(10): 39-44. |
[3] | 朱容辰, 李欣, 林小暖. 基于贝叶斯网络的视频专网安全风险分析方法[J]. 信息网络安全, 2021, 21(12): 91-101. |
[4] | 赵小林, 赵斌, 赵晶晶, 薛静锋. 基于攻击识别的网络安全度量方法研究[J]. 信息网络安全, 2021, 21(11): 17-27. |
[5] | 刘永磊, 金志刚, 郝琨, 张伟龙. 基于STRIDE和模糊综合评价法的移动支付系统风险评估[J]. 信息网络安全, 2020, 20(2): 49-56. |
[6] | 程洋, 雷敏, 罗群. 基于深度学习的物联网终端设备接入认证方法[J]. 信息网络安全, 2020, 20(11): 67-74. |
[7] | 王庆, 屠晨阳, shenjiahui@iie.ac.cn. 侧信道攻击通用框架设计及应用[J]. 信息网络安全, 2017, 17(5): 57-62. |
[8] | 董晓宁, 赵华容, 李殿伟, 王甲生. 基于模糊证据理论的信息系统安全风险评估研究[J]. 信息网络安全, 2017, 17(5): 69-73. |
[9] | 梁智强, 林丹生. 基于电力系统的信息安全风险评估机制研究[J]. 信息网络安全, 2017, 17(4): 86-90. |
[10] | 李涛, 张驰. 基于信息安全等保标准的网络安全风险模型研究[J]. 信息网络安全, 2016, 16(9): 177-183. |
[11] | 滕希龙, 曲海鹏. 基于区间值直觉模糊集相似性的信息安全风险评估方法研究[J]. 信息网络安全, 2015, 15(5): 62-68. |
[12] | 文伟平, 郭荣华, 孟正, 柏皛. 信息安全风险评估关键技术研究与实现[J]. 信息网络安全, 2015, 15(2): 7-8. |
[13] | 何鹏程, 方勇. 一种基于Web日志和网站参数的入侵检测和风险评估模型的研究[J]. 信息网络安全, 2015, 15(1): 61-65. |
[14] | 王星河, 余洋, 夏春和. 面向网络协同防御的动态风险评估模型[J]. 信息网络安全, 2014, 14(9): 39-43. |
[15] | 章恒, 禄凯. 构建云计算环境的安全检查与评估指标体系[J]. 信息网络安全, 2014, 14(9): 115-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||