信息网络安全 ›› 2022, Vol. 22 ›› Issue (10): 15-23.doi: 10.3969/j.issn.1671-1122.2022.10.003
收稿日期:
2022-08-16
出版日期:
2022-10-10
发布日期:
2022-11-15
通讯作者:
田华伟
E-mail:hwtian@live.cn
作者简介:
高昌锋(1998—),男,河南,硕士研究生,主要研究方向为数字图像取证|肖延辉(1984—),男,山西,副教授,博士,主要研究方向为公安情报技术、图像取证|田华伟(1983—),男,山东,副教授,博士,主要研究方向为信息隐藏与多媒体取证
基金资助:
GAO Changfeng, XIAO Yanhui, TIAN Huawei()
Received:
2022-08-16
Online:
2022-10-10
Published:
2022-11-15
Contact:
TIAN Huawei
E-mail:hwtian@live.cn
摘要:
光响应非均质性(Photo-Response Non-Uniformity,PRNU)噪声的唯一性和稳定性决定了其可作为数码相机的指纹并可用于数字图像的溯源与取证。为了提高PRNU指纹质量及图像溯源精确度,文章提出一种基于多阶段渐进式神经网络的图像相机指纹提取算法。该神经网络使用编码器-解码器架构来学习上下文特征,并利用高分辨率分支来挖掘局部特征,同时在每个阶段引入注意力模块来重新加权局部特征。这样既可以融合上下文信息,又能准确获取局部信息,进而可以充分挖掘图像自然噪声中潜在的PRNU指纹。在Daxing智能手机数据集和Dresden相机数据集上与其他算法的对比实验证明了文章提出的图像相机指纹提取算法的优势。
中图分类号:
高昌锋, 肖延辉, 田华伟. 基于多阶段渐进式神经网络的图像相机指纹提取算法[J]. 信息网络安全, 2022, 22(10): 15-23.
GAO Changfeng, XIAO Yanhui, TIAN Huawei. Image Camera Fingerprint Extraction Algorithm Based on MPRNet[J]. Netinfo Security, 2022, 22(10): 15-23.
表1
4种方法在两个数据集上提取PRNU相机指纹的Kappa值
数据集 | 图像大小 /像素 | xDnCNN | BM3D | Wavelet | MPRNet |
---|---|---|---|---|---|
Daxing 数据集 | 128×128 | 0.2421 | 0.3660 | 0.4102 | 0.4428 |
256×256 | 0.4826 | 0.5736 | 0.6352 | 0.6392 | |
512×512 | 0.6890 | 0.7603 | 0.8078 | 0.8022 | |
Dresden 数据集 | 128×128 | 0.3365 | 0.2847 | 0.3411 | 0.4356 |
256×256 | 0.5462 | 0.5241 | 0.6037 | 0.6599 | |
512×512 | 0.7373 | 0.7558 | 0.7826 | 0.8219 |
[1] | LUKAS J, FRIDRICH J, GOLJAN M. Digital Camera Identification from Sensor Pattern Noise[J]. IEEE Transactions on Information Forensics and Security, 2006, 1(2): 205-214. |
[2] | MIHCAK M K, KOZINTSEV I, RAMCHANDRAN K. Spatially Adaptive Statistical Modeling of Wavelet Image Coefficients and Its Application to Denoising[C]// IEEE. 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP99). New York: IEEE, 1999: 3253-3256. |
[3] | CORTIANA A, CONOTTER V, BOATO G, et al. Performance Comparison of Denoising Filters for Source Camera Identification[C]// SPIE. Media Watermarking, Security, and Forensics III. New York: SPIE, 2011: 60-65. |
[4] | JAIN V, SEUNG H S. Natural Image Denoising with Convolutional Networks[C]// Curran Associates Inc. Advances in Neural Information Processing Systems 21. Vancouver:NeurIPS, 2008: 769-776. |
[5] | BURGER H C, SCHULER C J, HARMELING S. Image Denoising: Can Plain Neural Networks Compete with BM3D[C]// IEEE. 2012 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2012: 2392-2399. |
[6] | AGOSTINELLI F, ANDERSON M R, LEE H. Adaptive Multi-Column Deep Neural Networks with Application to Robust Image Denoising[C]// Curran Associates Inc. Advances in Neural Information Processing Systems 26. Vancouver:NeurIPS, 2013: 1493-1501. |
[7] | XIE Junyuan, XU Linli, CHEN Enhong. Image Denoising and Inpainting with Deep Neural Networks[C]// SPIE. Advances in Neural Information Processing Systems 25. Vancouver:SPIE, 2012: 341-349. |
[8] | TIAN Chunwei, XU Yong, FEI Lunke, et al. Enhanced CNN for Image Denoising[J]. CAAI Transactions on Intelligence Technology, 2019, 4(1): 17-23. |
[9] | ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. |
[10] | XU Jun, ZHANG Lei, ZHANG D. A Trilateral Weighted Sparse Coding Scheme for Real-World Image Denoising[C]// CVF. Proceedings of the European Conference on Computer Vision. Munich: ECCV, 2018:20-36. |
[11] | ZHANG Yongsheng, TIAN Huawei, XIAO Yanhui, et al. PRNU Extraction Algorithm Based on Tripartite Weighted Sparse Coding Model[J]. Journal of Applied Science, 2019, 37(5): 704-710. |
张永胜, 田华伟, 肖延辉, 等. 基于三方加权稀疏编码模型的PRNU提取算法[J]. 应用科学学报, 2019, 37(5):704-710. | |
[12] | ZAMIR S W, ARORA A, KHAN S, et al. Multi-Stage Progressive Image Restoration[C]// CVF. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 14821-14831. |
[13] | ZHANG Yongsheng. Research on the Technology of CNN-Based Device Source Identification and the Construction of Standard Evaluation Dataset[D]. Beijing: People’s Public Security University of China, 2020. |
张永胜. 基于CNN的图像成像设备源鉴别技术研究与标准测评库建设[D]. 北京: 中国人民公安大学, 2020. | |
[14] | YANG Rui, LUO Weiqi, HUANG Jiwu. Multimedia Forensics[J]. Scientia Sinica (Informationis), 2013, 43(12): 1654-1672. |
杨锐, 骆伟祺, 黄继武. 多媒体取证[J]. 中国科学:信息科学, 2013, 43(12):1654-1672. | |
[15] | AL-ANI M, KHELIFI F. On the SPN Estimation in Image Forensics: A Systematic Empirical Evaluation[J]. IEEE Transactions on Information Forensics and Security, 2016, 12(5): 1067-1081. |
[16] | CHEN Mo, FRIDRICH J, GOLJAN M, et al. Determining Image Origin and Integrity Using Sensor Noise[C]// IEEE. 2008 IEEE Transactions on Information Forensics and Security. New York: IEEE, 2008: 74-90. |
[17] | KANG Xiangui, LI Yinxiang, QU Zhenhua, et al. Enhancing Source Camera Identification Performance with a Camera Reference Phase Sensor Pattern Noise[C]// IEEE. 2012 IEEE Transactions on Information Forensics and Security. New York: IEEE, 2012: 393-402. |
[18] | KANG Xiangui, LI Yinxiang, QU Zhenhua, et al. Enhancing ROC Performance of Trustworthy Camera Source Identification[C]// SPIE. Media Watermarking, Security, and Forensics III. New York: SPIE, 2011: 75-85. |
[19] | LIN Xufeng, LI C T. Preprocessing Reference Sensor Pattern Noise via Spectrum Equalization[C]// IEEE. 2016 IEEE Transactions on Information Forensics and Security. New York: IEEE, 2008: 74-90. |
[20] | GLOE T, BÖHME R. The Dresden Image Database for Benchmarking Digital Image Forensics[J]. Journal of Digital Forensic Practice, 2010, 3: 150-159. |
[21] | TIAN Huawei, XIAO Yanhui, CAO Gang, et al. Daxing Smartphone Identification Dataset[J]. IEEE Access, 2019, 7: 101046-101053. |
[22] | XIAO Yanhui, TIAN Huawei, CAO Gang, et al. Effective PRNU Extraction via Densely Connected Hierarchical Network[J]. Multimedia Tools and Applications, 2022, 81: 20443-20463. |
[1] | 刘光杰, 段锟, 翟江涛, 秦佳禹. 基于多特征融合的移动流量应用识别[J]. 信息网络安全, 2022, 22(7): 18-26. |
[2] | 王浩洋, 李伟, 彭思维, 秦元庆. 一种基于集成学习的列车控制系统入侵检测方法[J]. 信息网络安全, 2022, 22(5): 46-53. |
[3] | 刘峰, 杨成意, 於欣澄, 齐佳音. 面向去中心化双重差分隐私的谱图卷积神经网络[J]. 信息网络安全, 2022, 22(2): 39-46. |
[4] | 张郅, 李欣, 叶乃夫, 胡凯茜. 融合多重风格迁移和对抗样本技术的验证码安全性增强方法[J]. 信息网络安全, 2022, 22(10): 129-135. |
[5] | 刘家银, 李馥娟, 马卓, 夏玲玲. 基于多尺度卷积神经网络的恶意代码分类方法[J]. 信息网络安全, 2022, 22(10): 31-38. |
[6] | 弋晓洋, 张健. 基于图像的网络钓鱼邮件检测方法研究[J]. 信息网络安全, 2021, 21(9): 52-58. |
[7] | 李彦霖, 蔡满春, 芦天亮, 席荣康. 遗传算法优化CNN的网站指纹攻击方法[J]. 信息网络安全, 2021, 21(9): 59-66. |
[8] | 宋宇波, 马文豪, 胡爱群, 王俊波. 一种基于像素值偏移编解码技术的屏摄隐通道研究[J]. 信息网络安全, 2021, 21(4): 31-38. |
[9] | 杨铭, 张健. 基于图像识别的恶意软件静态检测模型[J]. 信息网络安全, 2021, 21(10): 25-32. |
[10] | 徐国天, 盛振威. 基于融合CNN与LSTM的DGA恶意域名检测方法[J]. 信息网络安全, 2021, 21(10): 41-47. |
[11] | 马骁, 蔡满春, 芦天亮. 基于CNN改进模型的恶意域名训练数据生成技术[J]. 信息网络安全, 2021, 21(10): 69-75. |
[12] | 李桥, 龙春, 魏金侠, 赵静. 一种基于LMDR和CNN的混合入侵检测模型[J]. 信息网络安全, 2020, 20(9): 117-121. |
[13] | 王湘懿, 张健. 基于图像和机器学习的虚拟化平台异常检测[J]. 信息网络安全, 2020, 20(9): 92-96. |
[14] | 刘静, 张学谦, 刘全明. 混合Gabor的轻量级卷积神经网络的验证码识别研究[J]. 信息网络安全, 2020, 20(7): 77-84. |
[15] | 张蕾华, 黄进, 张涛, 王生玉. 视频侦查中人像智能分析应用及算法优化[J]. 信息网络安全, 2020, 20(5): 88-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||