当前网络公开数据中的隐私泄露问题频出,给相关个人造成不良影响甚至严重危害,隐私保护技术研究因此越来越受到关注。k-匿名化作为一种能够有效保护隐私信息的技术,已发展了多种算法,但这些算法有的数据处理效率较低、有的抗攻击性能较弱。文章采用K-means算法并结合运用Mondrian算法进行聚类处理,建立了一种基于K-means的(k,e)匿名隐私保护的改进算法。不仅与具有代表性的隐私保护算法(k,e)-MDAV算法进行了运算效率的对比,还利用改进算法进行了涉及个人位置信息的应用案例分析。结果表明,文章提出的改进算法在实现数据匿名化基础上,能有效提高运行效率,且具有较强的抗链接攻击和抗同质化攻击性能。