信息网络安全 ›› 2022, Vol. 22 ›› Issue (7): 18-26.doi: 10.3969/j.issn.1671-1122.2022.07.003

• 技术研究 • 上一篇    下一篇

基于多特征融合的移动流量应用识别

刘光杰, 段锟(), 翟江涛, 秦佳禹   

  1. 南京信息工程大学电子与信息工程学院,南京 210044
  • 收稿日期:2022-03-12 出版日期:2022-07-10 发布日期:2022-08-17
  • 通讯作者: 段锟 E-mail:duankun0608@163.com
  • 作者简介:刘光杰(1980—),男,江苏,教授,博士,主要研究方向为网络与通信安全|段锟(1997—),男,江苏,硕士研究生,主要研究方向为智能网络流量分析|翟江涛(1983—),男,江苏,副教授,博士,主要研究方向为多媒体与信息安全|秦佳禹(1997—),女,江苏,硕士研究生,主要研究方向为智能网络流量分析
  • 基金资助:
    国家自然科学基金(61931004);国家自然科学基金(62072250);南京信息工程大学人才启动基金(2020r061)

Mobile Traffic Application Recognition Based on Multi-Feature Fusion

LIU Guangjie, DUAN Kun(), ZHAI Jiangtao, QIN Jiayu   

  1. School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2022-03-12 Online:2022-07-10 Published:2022-08-17
  • Contact: DUAN Kun E-mail:duankun0608@163.com

摘要:

移动应用识别是移动网络安全与管理研究领域的一项关键技术。针对移动应用更新后人工提取特征失效及特征提取不充分等问题,文章提出一种基于流量的移动应用识别模型MAITSF。该模型采用多通道并行架构,利用卷积神经网络(Convolutional Neural Network,CNN)提取移动应用流量的空间特征,使用长短时记忆(Long Short-Term Memory,LSTM)网络提取移动应用流量的时间特征,并融合各通道提取的特征。在此基础上,引入一个通道注意力模块对每个通道赋予不同权重,使模型能够集中关注神经网络提取的关键特征,增强流量特征的表征能力。文章在公开数据集(CIC-AAGM2017)和实验室采集的实际数据集上进行对比实验,实验结果表明,MAITSF在两个数据集上的分类准确率均达98%,相较于现有典型模型提高了4%以上。

关键词: 移动应用, 卷积神经网络, 长短时记忆网络, 特征融合, 通道注意力模块

Abstract:

Mobile application recognition is a key technology in the research field of mobile network security and management. Aiming at the failure of manual feature extraction after mobile applications update and insufficient feature extraction, this paper proposed a new traffic-based mobile application recognition model called MAITSF. The model adopted a multi-channel parallel architecture. In this model, the convolutional neural network (CNN) was used to extract the spatial characteristics of mobile application traffic, and the long short-term memory (LSTM) network was used to extract the temporal characteristics, and the features extracted from each channel were fused. On this basis, a channel attention module was introduced to allocate a series of weight parameters, so that the model can focus more on the key features extracted by the neural network, and enhance the ability of traffic characteristics characterization. In this paper, comparative experiments were carried out on the public dataset (CIC-AAGM2017) and the actual dataset collected in the laboratory. The experimental results show that the classification accuracy of MAITSF on the above two datasets reached 98%, which is more than 4% higher than the existing typical models.

Key words: mobile application, convolutional neural network, long short-term memory network, feature fusion, channel attention model

中图分类号: