信息网络安全 ›› 2022, Vol. 22 ›› Issue (7): 18-26.doi: 10.3969/j.issn.1671-1122.2022.07.003
收稿日期:
2022-03-12
出版日期:
2022-07-10
发布日期:
2022-08-17
通讯作者:
段锟
E-mail:duankun0608@163.com
作者简介:
刘光杰(1980—),男,江苏,教授,博士,主要研究方向为网络与通信安全|段锟(1997—),男,江苏,硕士研究生,主要研究方向为智能网络流量分析|翟江涛(1983—),男,江苏,副教授,博士,主要研究方向为多媒体与信息安全|秦佳禹(1997—),女,江苏,硕士研究生,主要研究方向为智能网络流量分析
基金资助:
LIU Guangjie, DUAN Kun(), ZHAI Jiangtao, QIN Jiayu
Received:
2022-03-12
Online:
2022-07-10
Published:
2022-08-17
Contact:
DUAN Kun
E-mail:duankun0608@163.com
摘要:
移动应用识别是移动网络安全与管理研究领域的一项关键技术。针对移动应用更新后人工提取特征失效及特征提取不充分等问题,文章提出一种基于流量的移动应用识别模型MAITSF。该模型采用多通道并行架构,利用卷积神经网络(Convolutional Neural Network,CNN)提取移动应用流量的空间特征,使用长短时记忆(Long Short-Term Memory,LSTM)网络提取移动应用流量的时间特征,并融合各通道提取的特征。在此基础上,引入一个通道注意力模块对每个通道赋予不同权重,使模型能够集中关注神经网络提取的关键特征,增强流量特征的表征能力。文章在公开数据集(CIC-AAGM2017)和实验室采集的实际数据集上进行对比实验,实验结果表明,MAITSF在两个数据集上的分类准确率均达98%,相较于现有典型模型提高了4%以上。
中图分类号:
刘光杰, 段锟, 翟江涛, 秦佳禹. 基于多特征融合的移动流量应用识别[J]. 信息网络安全, 2022, 22(7): 18-26.
LIU Guangjie, DUAN Kun, ZHAI Jiangtao, QIN Jiayu. Mobile Traffic Application Recognition Based on Multi-Feature Fusion[J]. Netinfo Security, 2022, 22(7): 18-26.
表1
数据集流量数据统计信息
公开数据集 | 数据量/条 | 比例 | 实际数据集 | 数据量/条 | 比例 |
---|---|---|---|---|---|
ILoveHue | 43473 | 11.59% | 12306 | 34192 | 7.46% |
Video call | 46866 | 12.51% | 百度地图 | 50990 | 11.12% |
Bookmate | 37539 | 10.02% | 大麦网 | 57933 | 12.53% |
Medicalid Free | 30285 | 8.08% | 大众点评 | 53352 | 11.52% |
Lifehack Cheatsheet:A lifehacker app | 55612 | 14.83% | 饿了么 | 51455 | 11.22% |
Instant Gaming | 28017 | 7.48% | 返利网 | 42568 | 9.28% |
Knight Dark Gothic Wallpaper | 35540 | 9.48% | 马蜂窝 | 36259 | 7.91% |
Apex Launcher | 34448 | 9.19% | 美团外卖 | 38438 | 8.61% |
Access Phone | 28145 | 7.51% | 亚马逊 | 45622 | 9.94% |
Freedom Mobile My Count | 34861 | 9.31% | 前程无忧 | 47720 | 10.41% |
总计 | 374786 | 100% | — | 458529 | 100% |
表2
MAITSF对移动应用流量的分类结果
公开数据集 | 精确率 | 召回率 | F1 |
---|---|---|---|
ILoveHue | 0.93 | 0.98 | 0.97 |
Video call | 1.00 | 1.00 | 1.00 |
Bookmate | 0.98 | 0.95 | 0.95 |
Medicalid Free | 1.00 | 1.00 | 1.00 |
Lifehack Cheatsheet:A lifehacker app | 1.00 | 1.00 | 1.00 |
Instant Gaming | 1.00 | 0.98 | 1.00 |
Knight Dark Gothic Wallpaper | 0.95 | 0.92 | 0.93 |
Apex Launcher | 0.98 | 1.00 | 0.99 |
Access Phone | 1.00 | 0.97 | 1.00 |
Freedom Mobile My Count | 0.92 | 0.98 | 0.93 |
实际数据集 | 精确率 | 召回率 | F1 |
12306 | 0.98 | 1.00 | 0.99 |
百度地图 | 0.99 | 0.99 | 1.00 |
大麦网 | 1.00 | 0.98 | 0.99 |
大众点评 | 0.98 | 1.00 | 0.99 |
饿了么 | 1.00 | 1.00 | 1.00 |
返利网 | 1.00 | 0.99 | 1.00 |
马蜂窝 | 0.95 | 0.96 | 0.95 |
美团外卖 | 1.00 | 1.00 | 1.00 |
亚马逊 | 0.99 | 0.99 | 0.99 |
前程无忧 | 0.95 | 0.94 | 0.95 |
[1] |
GREIS J, YUSHCHENKO A, VOGEL D, et al. Automated Identification of Vulnerable Devices in Networks Using Traffic Data and Deep Learning[J]. International Journal of Information Privacy, Security and Integrity, 2021, 5(1): 1-17.
doi: 10.1504/IJIPSI.2021.119166 URL |
[2] | XUE Wenlong, YU Jiong, GUO Zhiqi, et al. End-to-End Encrypted Traffic Classification Based on Feature Fusion Convolutional Neural Network[J]. Computer Engineering and Applications, 2021, 57(18): 114-121. |
薛文龙, 于炯, 郭志琦, 等. 基于特征融合卷积神经网络的端到端加密流量分类[J]. 计算机工程与应用, 2021, 57(18): 114-121. | |
[3] | YAN Haonan, LI Hui, XIAO Mingchi, et al. PGSM-DPI: Precisely Guided Signature Matching of Deep Packet Inspection for Traffic Analysis[C]// IEEE. 2019 IEEE Global Communications Conference (GLOBECOM). New York: IEEE, 2019: 1-6. |
[4] | LIU Chang, CAO Zigang, XIONG Gang, et al. MaMPF: Encrypted Traffic Classification Based on Multi-Attribute Markov Probability Fingerprints[C]// IEEE. 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). New York: IEEE, 2018: 1-10. |
[5] | REZAEI S, LIU Xin. Deep Learning for Encrypted Traffic Classification: An Overview[J]. IEEE Communications Magazine, 2019, 57(5): 76-81. |
[6] | WANG Pan, CHEN Xuejiao, YE Feng, et al. A Survey of Techniques for Mobile Service Encrypted Traffic Classification Using Deep Learning[J]. IEEE Access, 2019(7): 54024-54033. |
[7] | TONGAONKAR A, DAI Shuaifu, NUCCI A, et al. Understanding Mobile App Usage Patterns Using in-App Advertisements[C]// Springer. International Conference on Passive and Active Network Measurement. Heidelberg: Springer, 2013: 63-72. |
[8] | TREVISAN M, DRAGO I, MELLIA M, et al. Towards Web Service Classification Using Addresses and DNS[C]// IEEE. 2016 International Wireless Communications and Mobile Computing Conference (IWCMC). New York: IEEE, 2016: 38-43. |
[9] | ALAN H F, KAUR J. Can Android Applications be Identified Using only TCP/IP Headers of Their Launch Time Traffic?[C]// ACM. 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. New York: ACM, 2016: 61-66. |
[10] | WANG Wei, SHENG Yiqiang, WANG Jinlin, et al. HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks to Improve Intrusion Detection[J]. IEEE Access, 2017(6): 1792-1806. |
[11] | WANG Yong, ZHOU Huiyi, FENG Hao, et al. Network Traffic Classification Method Basing on CNN[J]. Journal on Communications, 2018, 39(1): 14-23. |
王勇, 周慧怡, 俸皓, 等. 基于深度卷积神经网络的网络流量分类方法[J]. 通信学报, 2018, 39(1): 14-23. | |
[12] | CHEN Zhengyang, YU Bowen, ZHANG Yu, et al. Automatic Mobile Application Traffic Identification by Convolutional Neural Networks[C]// IEEE. 2016 IEEE Trustcom/BigDataSE/ISPA. New York: IEEE, 2016: 301-307. |
[13] | WANG Wei, ZHU Ming, ZENG Xuewen, et al. Malware Traffic Classification Using Convolutional Neural Network for Representation Learning[C]// IEEE. 2017 International Conference on Information Networking (ICOIN). New York: IEEE, 2017: 712-717. |
[14] | WANG Wei, ZHU Ming, WANG Jinlin, et al. End-to-End Encrypted Traffic Classification with One-Dimensional Convolution Neural Networks[C]// IEEE. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). New York: IEEE, 2017: 43-48. |
[15] | LASHKARI A H, KADIR A F A, GONZALEZ H, et al. Towards a Network-Based Framework for Android Malware Detection and Characterization[C]// IEEE. 2017 15th Annual Conference on Privacy, Security and Trust (PST). New York: IEEE, 2017: 233-249. |
[16] | XU Hongping, MA Zewen, YI Hang, et al. Network Traffic Anomaly Detection Technology Based on Convolutional Recurrent Neural Network[J]. Netinfo Security, 2021, 21(7): 54-62. |
徐洪平, 马泽文, 易航, 等. 基于卷积循环神经网络的网络流量异常检测技术[J]. 信息网络安全, 2021, 21(7): 54-62. | |
[17] |
LOTFOLLAHI M, ZADE R S H, SIAVOSHANI M J, et al. Deep Packet: A Novel Approach for Encrypted Traffic Classification Using Deep Learning[J]. Soft Computing, 2020, 24(3): 1999-2012.
doi: 10.1007/s00500-019-04030-2 URL |
[18] | GUO Yanhua, SUN Lei, ZHANG Zhihong, et al. Algorithm Research on Improving Activation Function of Convolutional Neural Networks[C]// IEEE. 2019 Chinese Control and Decision Conference (CCDC). New York: IEEE, 2019: 3582-3586. |
[19] | ZHANG Guanghua, YAN Fengru, ZHANG Dongwen, et al. Insider Threat Detection Model Based on LSTM-Attention[J]. Netinfo Security, 2022, 22(2): 1-10. |
张光华, 闫风如, 张冬雯, 等. 基于LSTM-Attention的内部威胁检测模型[J]. 信息网络安全, 2022, 22(2): 1-10. | |
[20] |
SHAPIRA T, SHAVITT Y. FlowPic: A Generic Representation for Encrypted Traffic Classification and Applications Identification[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1218-1232.
doi: 10.1109/TNSM.2021.3071441 URL |
[21] | ZOU Zhuang, GE Jingguo, ZHENG Hongbo, et al. Encrypted Traffic Classification with a Convolutional Long Short-Term Memory Neural Network[C]// IEEE. 2018 IEEE 20th International Conference on High Performance Computing and Communications. New York: IEEE, 2018: 329-334. |
[1] | 王浩洋, 李伟, 彭思维, 秦元庆. 一种基于集成学习的列车控制系统入侵检测方法[J]. 信息网络安全, 2022, 22(5): 46-53. |
[2] | 刘峰, 杨成意, 於欣澄, 齐佳音. 面向去中心化双重差分隐私的谱图卷积神经网络[J]. 信息网络安全, 2022, 22(2): 39-46. |
[3] | 弋晓洋, 张健. 基于图像的网络钓鱼邮件检测方法研究[J]. 信息网络安全, 2021, 21(9): 52-58. |
[4] | 李彦霖, 蔡满春, 芦天亮, 席荣康. 遗传算法优化CNN的网站指纹攻击方法[J]. 信息网络安全, 2021, 21(9): 59-66. |
[5] | 潘孝勤, 杜彦辉. 基于混合特征和多通道GRU的伪造语音鉴别方法[J]. 信息网络安全, 2021, 21(10): 1-7. |
[6] | 杨铭, 张健. 基于图像识别的恶意软件静态检测模型[J]. 信息网络安全, 2021, 21(10): 25-32. |
[7] | 徐国天, 盛振威. 基于融合CNN与LSTM的DGA恶意域名检测方法[J]. 信息网络安全, 2021, 21(10): 41-47. |
[8] | 马骁, 蔡满春, 芦天亮. 基于CNN改进模型的恶意域名训练数据生成技术[J]. 信息网络安全, 2021, 21(10): 69-75. |
[9] | 谭茹涵, 左黎明, 刘二根, 郭力. 基于图像特征融合的恶意代码检测[J]. 信息网络安全, 2021, 21(10): 90-95. |
[10] | 李桥, 龙春, 魏金侠, 赵静. 一种基于LMDR和CNN的混合入侵检测模型[J]. 信息网络安全, 2020, 20(9): 117-121. |
[11] | 王湘懿, 张健. 基于图像和机器学习的虚拟化平台异常检测[J]. 信息网络安全, 2020, 20(9): 92-96. |
[12] | 刘静, 张学谦, 刘全明. 混合Gabor的轻量级卷积神经网络的验证码识别研究[J]. 信息网络安全, 2020, 20(7): 77-84. |
[13] | 张蕾华, 黄进, 张涛, 王生玉. 视频侦查中人像智能分析应用及算法优化[J]. 信息网络安全, 2020, 20(5): 88-93. |
[14] | 王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 47-54. |
[15] | 顾兆军, 郝锦涛, 周景贤. 基于改进双线性卷积神经网络的恶意网络流量分类算法[J]. 信息网络安全, 2020, 20(10): 67-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||