信息网络安全 ›› 2020, Vol. 20 ›› Issue (10): 67-74.doi: 10.3969/j.issn.1671-1122.2020.10.009
收稿日期:
2020-03-02
出版日期:
2020-10-10
发布日期:
2020-11-25
通讯作者:
郝锦涛
E-mail:haojintao291@163.com
作者简介:
顾兆军(1966—),男,山东,教授,博士,主要研究方向为网络与信息安全|郝锦涛(1995—),男,山西,硕士研究生,主要研究方向为大数据与网络安全|周景贤(1981—),男,河南,副研究员,博士,主要研究方向为网络与信息安全
基金资助:
GU Zhaojun1,2, HAO Jintao1,2(), ZHOU Jingxian1
Received:
2020-03-02
Online:
2020-10-10
Published:
2020-11-25
Contact:
HAO Jintao
E-mail:haojintao291@163.com
摘要:
文章提出一种改进的双线性卷积神经网络,用于恶意网络流量分类。该网络采用跨层多特征融合的设计思想,首先使用两个基于VGG-Net(网络A、网络B)的神经网络进行特征提取,连接跨层多特征融合模块进行特征融合,提高特征表达能力;然后通过多次迭代优化训练网络模型至拟合状态;最后利用训练至拟合的网络模型对测试集进行分类检测,得出分类结果。实验表明,该算法在恶意网络流量分类中具有较高的准确率、精确率和F值。
中图分类号:
顾兆军, 郝锦涛, 周景贤. 基于改进双线性卷积神经网络的恶意网络流量分类算法[J]. 信息网络安全, 2020, 20(10): 67-74.
GU Zhaojun, HAO Jintao, ZHOU Jingxian. Classification of Malicious Network Traffic Based on Improved Bilinear Convolutional Neural Network[J]. Netinfo Security, 2020, 20(10): 67-74.
表1
网络A、网络B卷积层和池化层详细参数
单元模块 | 层名 | 参数 (卷积核大小、步长、填充) | 输出通道数 | 输出特征图大小(长×宽×通道数) |
---|---|---|---|---|
Conv1_X | Conv1_1 | 3×3,1×1,1 | 64 | 32×32×64 |
Conv1_2 | 3×3,1×1,1 | 64 | 32×32×64 | |
Maxpool_1 | 2×2,2,0 | 64 | 16×16×64 | |
Conv2_X | Conv2_1 | 3×3,1×1,1 | 128 | 16×16×128 |
Conv2_2 | 3×3,1×1,1 | 128 | 16×16×128 | |
Maxpool_2 | 2×2,2,0 | 128 | 8×8×128 | |
Conv3_X | Conv3_1 | 3×3,1×1,1 | 256 | 8×8×256 |
Conv3_2 | 3×3,1×1,1 | 256 | 8×8×256 | |
Conv3_3 | 3×3,1×1,1 | 256 | 8×8×256 | |
Maxpool_3 | 2×2,2,0 | 256 | 4×4×256 | |
Conv4_X | Conv4_1 | 3×3,1×1,1 | 512 | 4×4×512 |
Conv4_2 | 3×3,1×1,1 | 512 | 4×4×512 | |
Conv4_3 | 3×3,1×1,1 | 512 | 4×4×512 | |
Maxpool_4 | 2×2,2,0 | 512 | 2×2×512 | |
Conv5_X | Conv5_1 | 3×3,1×1,1 | 512 | 2×2×512 |
Conv5_2 | 3×3,1×1,1 | 512 | 2×2×512 | |
Conv5_3 | 3×3,1×1,1 | 512 | 2×2×512 |
[1] | China Internet Network Information Center. The 44th Statistical Report on Internet Development in China[EB/OL]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201908, 2019-8-30. |
中国互联网络信息中心.第44次中国互联网络发展现状统计报告[EB/OL]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201908, 2019-8-30. | |
[2] | MADHUKAR A, WILLIAMSON C. A Longitudinal Study of P2P Traffic Classification [C]//IEEE. 14th IEEE International Symposium on Modeling, Analysis, and Simulation, September 11-14, 2006, Monterey, CA, USA. New York: IEEE, 2006: 179-188. |
[3] | JAISWAL R C, LOKHANDE S D. Machine Learning Based Internet Traffic Recognition with Statistical Approach [C]//IEEE. 2013 Annual IEEE India Conference(INDICON), December 13-15, 2013, Mumbai. New York: IEEE, 2013: 1-6. |
[4] | DHOTE Y, AGRAWAL S, DEED A J. A Survey on Feature Selection Techniques for Internet Traffic Classification [C]//IEEE. 2015 International Conference on Computational Intelligence and Communication Networks(CICN), December 12-14, 2015, Jabalpur. New York: IEEE, 2015: 1375-1380. |
[5] | ZHANG Jian, CHEN Bohan, GONG Liangyi, et al. Research on Malware Detection Technology Based on Image Analysis[J]. Netinfo Security, 2019,19(10):24-31. |
[6] | ZHANG Chenbin, ZHANG Yunchun, ZHENG Yang, et al. Malware Classification Based on Grayscale Texture Fingerprints[J]. Computer Science, 2018,45(S1):383-386. |
张晨斌, 张云春, 郑杨, 等. 基于灰度图纹理指纹的恶意软件分类[J]. 计算机科学, 2018,45(S1):383-386. | |
[7] | WANG Wei, ZHU Ming, ZENG Xuewen, et al. Malware Traffic Classification Using Convolutional Neural Network for Representation Learning [C]//IEEE. 2017 International Conference on Information Networking(ICOIN), January 11-13, 2017, Da Nang, Vietnam. New York: IEEE, 2017: 712-717. |
[8] | RAN Jing, CHEN Yexin, LI Shulan. Three-dimensional Convolutional Neural Network Based Traffic Classification for Wireless Communications [C]//IEEE. 2018 IEEE Global Conference on Signal and Information Processing(GlobalSIP), November 26-29, 2018, Anaheim, CA, USA. New York: IEEE, 2018: 624-627. |
[9] | ZHANG Fan, WANG Yong, MIAO Ye. Network Traffic Classification Method Based on Improved Capsule Neural Network [C]//IEEE. 14th International Conference on Computational Intelligence and Security(CIS), November 16-19, 2018, Hangzhou, China. New York: IEEE, 2018: 174-178. |
[10] | LIM H, KIM J, HEO J, et al. Packet-Based Network Traffic Classification Using Deep Learning [C]//IEEE. 2019 International Conference on Artificial Intelligence in Information and Communication(ICAIIC), February 11-13, 2019, Okinawa, Japan. New York: IEEE, 2019: 46-51. |
[11] | LI Daoquan, WANG Xue, YU Bo, et al. Network Traffic Classification Method Based on One-dimensional Convolutional Neural Network[J]. Computer Engineering and Applications, 2020,56(3):94-99. |
李道全, 王雪, 于波, 等. 基于一维卷积神经网络的网络流量分类方法[J]. 计算机工程与应用, 2020,56(3):94-99. | |
[12] | HAN Xiaoguang, QU Wu, YAO Xuanxia, et al. Research on Detection Method of Malicious Code Variant Based on Texture Fingerprint[J]. Journal of Communications, 2014,35(8):125-136. |
韩晓光, 曲武, 姚宣霞, 等. 基于纹理指纹的恶意代码变种检测方法研究[J]. 通信学报, 2014,35(8):125-136. | |
[13] | HAN Xiaoguang. Research on Key Technologies of Malicious Code Detection[D]. Beijing: University of Science and Technology Beijing, 2015. |
韩晓光. 恶意代码检测关键技术研究[D]. 北京:北京科技大学, 2015. | |
[14] | XIE Bo. Research on ResNet Based Intrusion Detection Model[D]. Lanzhou: Lanzhou University, 2019. |
谢博. 基于ResNet的入侵检测模型研究[D]. 兰州:兰州大学, 2019. | |
[15] | LUO Jianhao, WU Jianxin. Review of Fine-grained Image Classification Based on Deep Convolution Features[J]. Journal of Automation, 2017,43(8):1306-1318. |
罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017,43(8):1306-1318. | |
[16] | LIU Shuying, DENG Weihong. Very Deep Convolutional Neural Network Based Image Classification Using Small Training Sample Size [C]//IEEE. 3rd IAPR Asian Conference on Pattern Recognition(ACPR), November 3-6, 2015, Kuala Lumpur, Malaysia. New York: IEEE, 2015: 730-734. |
[17] | HE Kaiming, ZHANG Xiangyu, REN Shaoqin, et al. Deep Residual Learning for Image Recognition [C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 27-30, 2016, Las Vegas, NV. New York: IEEE, 2016: 770-778. |
[18] | HUANG Gao, LIU Zhuang, MAATEN V D, et al. Densely Connected Convolutional Networks [C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), July 21-26, 2017, Honolulu, HI. New York: IEEE, 2017: 2261-2269. |
[19] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Classification with Deep Convolutional Neural Networks[EB/OL]. http://www.image-net.org/challenges/LSVRC, 2019-12-23. |
[20] | ZAREBA W, SUTSKEVER I, VINYALS O, Recurrent Neural Network Regularization[EB/OL]. https://arxiv.org/abs/1409.2329, 2014-9-8. |
[1] | 李桥, 龙春, 魏金侠, 赵静. 一种基于LMDR和CNN的混合入侵检测模型[J]. 信息网络安全, 2020, 20(9): 117-121. |
[2] | 刘大恒, 李红灵. QR码网络钓鱼检测研究[J]. 信息网络安全, 2020, 20(9): 42-46. |
[3] | 李世斌, 李婧, 唐刚, 李艺. 基于HMM的工业控制系统网络安全状态预测与风险评估方法[J]. 信息网络安全, 2020, 20(9): 57-61. |
[4] | 毕亲波, 赵呈东. 基于STRIDE-LM的5G网络安全威胁建模研究与应用[J]. 信息网络安全, 2020, 20(9): 72-76. |
[5] | 王湘懿, 张健. 基于图像和机器学习的虚拟化平台异常检测[J]. 信息网络安全, 2020, 20(9): 92-96. |
[6] | 来疆亮, 侯一凡, 卢旭明. 基于信息度量和损耗的网络安全系统综合效能分析研究[J]. 信息网络安全, 2020, 20(8): 81-88. |
[7] | 刘静, 张学谦, 刘全明. 混合Gabor的轻量级卷积神经网络的验证码识别研究[J]. 信息网络安全, 2020, 20(7): 77-84. |
[8] | 冉金鹏, 王翔, 赵尚弘, 高航航. 基于果蝇优化的虚拟SDN网络映射算法[J]. 信息网络安全, 2020, 20(6): 65-74. |
[9] | 孟相如, 徐江, 康巧燕, 韩晓阳. 基于熵权VIKOR的安全虚拟网络映射算法[J]. 信息网络安全, 2020, 20(5): 21-28. |
[10] | 张蕾华, 黄进, 张涛, 王生玉. 视频侦查中人像智能分析应用及算法优化[J]. 信息网络安全, 2020, 20(5): 88-93. |
[11] | 刘建伟, 韩祎然, 刘斌, 余北缘. 5G网络切片安全模型研究[J]. 信息网络安全, 2020, 20(4): 1-11. |
[12] | 王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 47-54. |
[13] | 赵志岩, 纪小默. 智能化网络安全威胁感知融合模型研究[J]. 信息网络安全, 2020, 20(4): 87-93. |
[14] | 黎水林, 祝国邦, 范春玲, 陈广勇. 一种新的等级测评综合得分算法研究[J]. 信息网络安全, 2020, 20(2): 1-6. |
[15] | 荆涛, 万巍. 面向属性迁移状态的P2P网络行为分析方法研究[J]. 信息网络安全, 2020, 20(1): 16-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||