信息网络安全 ›› 2019, Vol. 19 ›› Issue (3): 61-71.doi: 10.3969/j.issn.1671-1122.2019.03.008

• • 上一篇    下一篇

融合最大相异系数密度的SMOTE算法的入侵检测方法

陈虹, 肖越(), 肖成龙, 陈建虎   

  1. 辽宁工程技术大学软件学院,辽宁葫芦岛 125105
  • 收稿日期:2018-09-28 出版日期:2019-03-19 发布日期:2020-05-11
  • 作者简介:

    作者简介:陈虹(1967—),女,辽宁,副教授,硕士,主要研究方向为信息安全;肖越(1993—),女,黑龙江,硕士研究生,主要研究方向为信息安全及图形图像处理;肖成龙(1984—),男,湖南,副教授,博士,主要研究方向为软硬件协同设计、高层次综合、可扩展处理器;陈建虎(1992—),男,甘肃,硕士研究生,主要研究方向为入侵检测、机器学习。

  • 基金资助:
    国家自然科学基金[61404069]

The Intrusion Detection Method of SMOTE Algorithm with Maximum Dissimilarity Coefficient Density

Hong CHEN, Yue XIAO(), Chenglong XIAO, Jianhu CHEN   

  1. School of Software Engineering, Liaoning Technical University, Huludao Liaoning 125105, China
  • Received:2018-09-28 Online:2019-03-19 Published:2020-05-11

摘要:

基于机器学习的入侵检测方法应用于非平衡入侵数据集时,大多专注于提升整体检测率与降低整体漏报率,但少数类的检测率较低,在实际应用中良好的少数类分类性能同样具有重要意义。因此,文章提出一种基于最大相异系数密度的SMOTE(Synthetic Minority Oversampling Technique)算法与深度信念网络(DBN)和梯度提升决策树(GBDT)的入侵检测方法。其核心思想为:在数据预处理阶段,应用基于最大相异系数密度的SMOTE算法进行数据过采样及深度信念网络进行特征提取,提高少数类样本数量同时降低样本维数;在生成的平衡数据集上,训练梯度提升决策树分类器,并利用NSLKDD数据集进行了实验验证。实验结果表明,所提方法在保持较高的整体检测率的同时,少数类检测效果提升明显,提升了入侵检测方法对于少数类攻击的检测能力。

关键词: 入侵检测, 最大相异系数, 密度, SMOTE算法, DBN, GBDT

Abstract:

Intrusion detection method based on machine learning is applied in imbalanced intrusion datasets, mostly focused on enhancing the overall detection rate and reduce the overall failure rate, but the detection rates of minority classes are low, a good classification performance of the minority classes in practical application is also important. Therefore, an intrusion detection method for the SMOTE based on the maximum dissimilarity coefficient density algorithm with DBN (Deep Belief Network) and GBDT (Gradient Boosting Decision Tree) is proposed. Its core idea: in the data preprocessing stage, the SMOTE algorithm based on the maximum dissimilarity coefficient density is applied for data oversampling, and Deep Belief Network is used for feature extraction. In this way, improving the number of minority samples, and increasing the number of samples while reducing the number of sample dimensions, then training GBDT classifier on the balanced datasets, and the experimental verification is carried out by using the NSLKDD datasets. Experimental results show that ,while the proposed method maintains a high overall detection rate, the effect of minority detection is improved significantly, which improves the detection ability of intrusion detection for minority attack.

Key words: intrusion detection, maximum dissimilarity coefficient, density, SMOTE algorithm, DBN, GBDT

中图分类号: