信息网络安全 ›› 2019, Vol. 19 ›› Issue (3): 1-10.doi: 10.3969/j.issn.1671-1122.2019.03.001

• •    下一篇

基于ICA算法与深度神经网络的入侵检测模型

刘敬浩1, 毛思平1, 付晓梅2   

  1. 1. 天津大学电气自动化与信息工程学院,天津300072
    2.天津大学海洋科学与技术学院,天津300072
  • 收稿日期:2018-08-15 出版日期:2019-03-19 发布日期:2020-05-11
  • 作者简介:

    作者简介:刘敬浩(1963—),男,天津,副教授,硕士,主要研究方向为网络安全、网络虚拟环境、无线网络通信;毛思平(1995—),男,浙江,硕士研究生,主要研究方向为网络安全、机器学习;付晓梅(1968—),女,重庆,副教授,博士,主要研究方向为无线通信、海洋通信、信息安全。

  • 基金资助:
    国家自然科学基金[61571323]

Intrusion Detection Model Based on ICA Algorithm and Deep Neural Network

Jinghao LIU1, Siping MAO1, Xiaomei FU2   

  1. 1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
    2. School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
  • Received:2018-08-15 Online:2019-03-19 Published:2020-05-11

摘要:

针对网络数据的特征维数高、非线性可分等问题,文章提出了一种基于独立成分分析ICA与深度神经网络DNN的入侵检测模型ICA-DNN。首先,利用ICA算法将网络连接数据基于极大非高斯性进行特征提取,并将数据从高维特征空间映射到低维空间,消除特征冗余性。然后使用深度神经网络进行分类,深度神经网络采用ReLU激活函数和交叉熵损失函数以及adam优化算法。ICA-DNN模型不仅能减少特征冗余性,还能抓取特征之间的内部结构。实验表明,基于ICA-DNN的入侵检测模型与一些浅层机器学习模型比较具有更好的特征学习能力和更精确的分类能力。

关键词: 独立成分分析, 入侵检测, 深度神经网络, 特征降维

Abstract:

In order to solve the problem of high dimensionality and non-linearity of network data, an intrusion detection model, which is based on ICA (Independent Component Analysis) and DNN (Deep Neural Network), is proposed. First,the characteristics of network connection data are reduced by using ICA algorithm based on maximal non Gauss property. The data is mapped from high dimensional feature space to low dimensional space, and the feature redundancy is eliminated. Then the deep neural network is used for classification. Deep neural network adopts ReLU activation function and cross entropy loss function and Adam optimization algorithm. ICA-DNN algorithm can not only reduce feature redundancy, but also grasp the internal structure of features. The experiment shows that the ICA-DNN based intrusion detection algorithm has better feature learning ability and more accurate classification ability than some shallow machine learning algorithms.

Key words: independent component analysis, intrusion detection, deep neural network, feature dimension reduction

中图分类号: