信息网络安全 ›› 2018, Vol. 18 ›› Issue (6): 1-6.doi: 10.3969/j.issn.1671-1122.2018.06.001

• •    下一篇

AR-OSELM算法在网络入侵检测中的应用研究

魏书宁1,2, 陈幸如1,2(), 焦永1,2, 王进1,2   

  1. 1.湖南师范大学信息科学与工程学院,湖南长沙410006
    2.湖南师范大学物联网技术及应用重点实验室,湖南长沙410006
  • 收稿日期:2018-03-12 出版日期:2018-06-15 发布日期:2020-05-11
  • 作者简介:

    作者简介:魏书宁(1979—), 女,湖南,副教授, 博士,主要研究方向为智能控制、数据分析等;陈幸如(1994—),女,安徽,硕士研究生,主要研究方向为神经网络、大数据分析;焦永(1979—),男,山东,讲师,硕士,主要研究方向为微处理设计;王进(1981—),男,江苏,讲师,硕士,主要研究方向为嵌入式与信息安全。

  • 基金资助:
    国家自然科学基金[61472437];湖南省教育厅一般项目[531120];湖南师大自然科学研究项目[物160432]

Research on the Application of AR-OSELM Algorithm in Network Intrusion Detection

Shuning WEI1,2, Xingru CHEN1,2(), Yong JIAO1,2, Jin WANG1,2   

  1. 1. College of Information Science and Engineering, Hunan Normal University, Changsha Hunan 410006, China
    2. Internet of Things Technology and Application Key Lab, Hunan Normal University, Changsha Hunan 410006, China
  • Received:2018-03-12 Online:2018-06-15 Published:2020-05-11

摘要:

文章针对增量网络入侵数据属性冗余导致的传统学习算法效率低、检测精度差等问题,提出一种基于粗糙集属性约简的在线序贯极限学习机(AR-OSELM)方法。该方法首先对入侵数据采用粗糙集正域和分辨矩阵的方法获得属性核,筛选出无冗余属性的特征集合,然后使用在线序贯极限学习机作为分类算法进行分类。仿真实验结果表明,与BP、ELM及HELM神经网络算法相比,AR-OSELM算法对增量数据的学习和训练效率更高,入侵检测准确,误报率较低。算法有较好的泛化能力,为网络入侵检测提供了一种新的方法。

关键词: 网络入侵检测, 粗糙集, 属性约简, 在线序贯极限学习机

Abstract:

Considering the low learning efficiency and poor detection precision of the traditional learning algorithms caused by the redundant attributes of the incremental network intrusion data, this paper proposes an online sequential extreme learning machine algorithm based on attributes reduction in rough set (AR-OSELM). Firstly, the attribute kernels are obtained by using the methods of rough set positive domain and discernibility matrix on intrusion data ,thus characteristic collections of non-redundant attributes are obtained. Then using the online sequential extreme learning machine as the classification algorithm to classify the data sets. The results of the simulation experiment show that that the AR-OSELM algorithm is more efficient in learning and training incremental data and has lower error rates with comparison to BP, ELM and HELM algorithms. The AR-OSELM algorithm has better ability of generalization than other tradition algorithms which provides a new method for network intrusion detection.

Key words: network intrusion detection, rough set, attributes reduction, OSELM

中图分类号: