信息网络安全 ›› 2018, Vol. 18 ›› Issue (6): 7-11.doi: 10.3969/j.issn.1671-1122.2018.06.002

• • 上一篇    下一篇

WSANs中基于生物免疫机制的动态数据汇集算法研究

王艳, 潘琛()   

  1. 江南大学教育部物联网技术应用工程中心,江苏无锡 214122
  • 收稿日期:2018-02-11 出版日期:2018-06-15 发布日期:2020-05-11
  • 作者简介:

    作者简介:王艳(1978—),女,江苏,教授,博士,主要研究方向为网络化控制系统、无线传感器网络;潘琛(1988—),女,河南,硕士研究生,主要研究方向为无线传感器网络协同控制。

  • 基金资助:
    国家自然科学基金[61572238];国家高技术研究发展计划(863计划)[2014AA041505];江苏省杰出青年基金[BK20160001]

Research on Dynamic Data Gathering Algorithm Based on Biological Immune Mechanism in WSANs

Yan WANG, Chen PAN()   

  1. Engineering Research Center of Internet of Things Technology Applications, Ministry of Education, Jiangnan University, Wuxi Jiangsu 214122, China
  • Received:2018-02-11 Online:2018-06-15 Published:2020-05-11

摘要:

如何高效实现数据汇集并均衡网络能耗一直是无线传感执行网络(WSANs)的研究热点。针对传感器节点与执行器节点协同工作过程中由于数据汇集引起的数据丢包、时延能量空洞问题,受生物免疫机制启发,文章提出一种基于生物免疫机制的动态数据汇集算法,该算法以优化中继节点、代理sink节点及设计执行器节点的移动轨迹为目标。首先,在学习因子作用下,利用亲和度和节点剩余能量计算中继节点的选择概率,并由信息失真度动态修正协同响应概率阈值来优化选择被激活的节点数;然后,由亲和度、节点剩余能量及负载情况计算代理sink的选择概率;最后,移动执行器采用竞标机制对代理sink进行动态招标,并根据代理sink竞选成功概率的大小决定其移动方向,完成动态数据收集。仿真实验表明,文中算法较其他算法在丢包率、负载均衡及网络寿命方面都有更好性能。

关键词: 无线传感执行网, 动态数据汇集, 生物免疫, 负载均衡, 网络寿命

Abstract:

How to achieve data gathering efficiently and balance network energy consumption in the process of sensor and actor collaboration has always been a hot research topic of wireless sensor and actor networks (WSANs). Aiming to solve data packet loss, delay and the nodes energy hole caused by data aggregation during the cooperative work of sensor-actor (S-A), inspired by biological immune mechanisms, a dynamic data gathering algorithm based on biological immune mechanism (DDG-BIM) is proposed. The algorithm aims at optimizing the relay nodes, proxy sinks nodes and design the movement trajectories of actor node. Firstly, under the influence of the learning factor, the selection probability of the relay node is calculated by using the affinity and the node residual energy. In order to optimize the number of activated nodes, the probability threshold of the cooperative response is dynamically modified by the information distortion degree. Secondly, the probability of selection of the proxy sink is calculated by taking advantage of the affinity, node residual energy, and load conditions. Finally, the mobile actor uses bidding mechanism to dynamically to dynamically select the bidding sinks, and independently decide the direction of its movement according to the probability of successful campaign, so as to complete the dynamic data collection. The simulation results show that the proposed algorithm has better performance than other algorithms in terms of packet loss rate, load balancing and network lifetime.

Key words: wireless sensor and actor networks, dynamic data gathering, biological immune, load balancing, network life

中图分类号: