信息网络安全 ›› 2025, Vol. 25 ›› Issue (3): 451-466.doi: 10.3969/j.issn.1671-1122.2025.03.008

• 理论研究 • 上一篇    下一篇

基于本体的网络安全知识图谱构建方法

许智双1, 张昆2, 范俊超1, 常晓林1()   

  1. 1.北京交通大学网络空间安全学院,北京 100044
    2.国家信息中心,北京 100045
  • 收稿日期:2024-12-30 出版日期:2025-03-10 发布日期:2025-03-26
  • 通讯作者: 常晓林 E-mail:xlchang@bjtu.edu.cn
  • 作者简介:许智双(1999—),女,山东,硕士研究生,主要研究方向为网络安全|张昆(1976—),男,甘肃,高级工程师,本科,主要研究方向为网络安全|范俊超(1998—),男,湖北,博士研究生,主要研究方向为人工智能安全|常晓林(1971—),女,福建,教授,博士,CCF会员,主要研究方向为网络安全与隐私保护
  • 基金资助:
    国家自然科学基金(62272028)

Construction Method of Cybersecurity Knowledge Graph Based on Ontology

XU Zhishuang1, ZHANG Kun2, FAN Junchao1, CHANG Xiaolin1()   

  1. 1. School of Cyberspace Science and Technology, Beijing Jiaotong University, Beijing 100044, China
    2. State Information Center, Beijing 100045, China
  • Received:2024-12-30 Online:2025-03-10 Published:2025-03-26
  • Contact: CHANG Xiaolin E-mail:xlchang@bjtu.edu.cn

摘要:

随着信息技术的高速发展,网络空间与现实世界连接越来越紧密。将知识图谱技术应用于网络安全领域,能够从网络空间海量数据中获取碎片化的有效安全知识进行整合,为决策提供支持。现有方法存在本体模型缺乏统一标准、知识抽取效果不佳等问题,因此,文章提出一种基于本体的网络安全知识图谱构建方法,该方法包含命名实体识别和关系抽取两个模型,其中命名实体识别模型结合BERT预训练模型、双向长短期记忆网络、多头注意力机制和条件随机场;关系抽取模型结合BERT预训练模型、自注意力机制和卷积神经网络。这两个模型提升了命名实体识别的准确率,并提升了关系抽取任务的准确率以及自动化程度。文章提出的网络安全知识图谱构建方法可整合并分析网络安全数据,实现网络安全知识的智能化检索以及知识图谱的自动更新和扩展。

关键词: 网络安全, 知识图谱, 本体, 知识抽取

Abstract:

With the rapid development of information technology, the connection between cyberspace and the real world has become increasingly close. Applying knowledge graph technology to the field of cybersecurity allows for the extraction and integration of fragmented, valuable security knowledge from vast amounts of data in cyberspace, providing support for decision-making. Existing methods face issues such as the lack of a unified standard for ontology models and poor knowledge extraction performance. This paper proposed an ontology-based method for constructing a cybersecurity knowledge graph, which included two models: named entity recognition and relation extraction. The named entity recognition model integrated the BERT pre-trained model, bidirectional long short-term memory network, multi-head attention mechanism, and conditional random fields; the relation extraction model combined the BERT pre-trained model, self-attention mechanism and convolutional neural network. These two models improved the accuracy of named entity recognition and enhanced the accuracy and automation of relation extraction tasks. The proposed method for constructing the cybersecurity knowledge graph can integrate and analyze cybersecurity data, enabling intelligent retrieval of cybersecurity knowledge and automatic updates and expansion of the knowledge graph.

Key words: cybersecurity, knowledge graph, ontology, knowledge extraction

中图分类号: