信息网络安全 ›› 2023, Vol. 23 ›› Issue (6): 22-33.doi: 10.3969/j.issn.1671-1122.2023.06.003
收稿日期:
2022-12-30
出版日期:
2023-06-10
发布日期:
2023-06-20
通讯作者:
胡巍 作者简介:
谢盈(1984—),女,四川,副教授,博士,主要研究方向为网络空间安全、工业控制系统安全|曾竹(1999—),女,四川,硕士研究生,主要研究方向为工业控制系统安全|胡巍(1973—),男,河北,助理研究员,主要研究方向为网络空间安全、网络安全等级保护|丁旭阳(1981—),男,贵州,教授,博士,主要研究方向为网络空间安全
基金资助:
XIE Ying1,2, ZENG Zhu2, HU Wei3(), DING Xuyang1
Received:
2022-12-30
Online:
2023-06-10
Published:
2023-06-20
摘要:
为了准确检测工业控制网络中的虚假数据注入攻击,并快速补偿攻击对系统造成的影响,文章提出一种基于状态估计的攻击检测与补偿方法。该方法首先基于工业控制系统数学模型构造时序卡尔曼滤波器,对状态向量进行最优估计;然后设计双重判定机制,排除噪声和干扰引起的不稳定状态;最后提出多步估计攻击补偿策略,利用系统最后一次处于安全状态时的测量数据为系统提供补偿控制信号。双区域互联电力系统的负荷频率控制系统上的实验结果表明,该方法可以有效检测并补偿虚假数据注入攻击,且在频率偏差控制、控制信号补偿等方面均优于对比算法。
中图分类号:
谢盈, 曾竹, 胡巍, 丁旭阳. 一种虚假数据注入攻击检测与补偿方法[J]. 信息网络安全, 2023, 23(6): 22-33.
XIE Ying, ZENG Zhu, HU Wei, DING Xuyang. A False Data Injection Attack Detecting and Compensating Method[J]. Netinfo Security, 2023, 23(6): 22-33.
[1] |
DING Derui, HAN Qinglong, XIANG Yang, et al. A Survey on Security Control and Attack Detection for Industrial Cyber-Physical Systems[J]. Neurocomputing, 2018, 275: 1674-1683.
doi: 10.1016/j.neucom.2017.10.009 URL |
[2] |
MUSLEH A S, GUO Chen, ZHAO Yangdong, et al. Attack Detection in Automatic Generation Control Systems Using LSTM-Based Stacked Autoencoders[J]. IEEE Transactions on Industrial Informatics, 2022, 19(1): 153-165.
doi: 10.1109/TII.2022.3178418 URL |
[3] | KRAVCHIK M, SHABTAI A. Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks[C]// ACM. The 2018 Workshop on Cyber-Physical Systems Security and Privacy. New York: ACM, 2018: 72-83. |
[4] | YAN Jun, TANG Bo, HE Haibo. Detection of False Data Attacks in Smart Grid with Supervised Learning[C]// IEEE. 2016 International Joint Conference on Neural Networks(IJCNN). New York:IEEE, 2016: 1395-1402. |
[5] |
ASHRAFUZZAMAN M, DAS S, CHAKHCHOUKH Y, et al. Detecting Stealthy False Data Injection Attacks in the Smart Grid Using Ensemble-Based Machine Learning[EB/OL]. (2020-7-29)[2022-12-17]. https://doi.org/10.1016/j.cose.2020.101994.
doi: https://doi.org/10.1016/j.cose.2020.101994 |
[6] | WAGHMARE S, KAZI F, SINGH N. Data Driven Approach to Attack Detection in a Cyber-Physical Smart Grid System[C]// IEEE. 2017 Indian Control Conference(ICC). New York:IEEE, 2017: 271-276. |
[7] |
WANG Yufeng, ZHANG Zhihao, MA Jianhua, et al. KFRNN: An Effective False Data Injection Attack Detection in Smart Grid Based on Kalman Filter and Recurrent Neural Network[J]. IEEE Internet of Things Journal, 2021, 9(9): 6893-6904.
doi: 10.1109/JIOT.2021.3113900 URL |
[8] |
WANG Jiexin, LAI Yingxu, LIU Jing. Stealthy Attack Detection Method Based on Multi-Feature Long Short-Term Memory Prediction Model[J]. Future Generation Computer Systems, 2022, 137: 248-259.
doi: 10.1016/j.future.2022.07.014 URL |
[9] |
MANANDHAR K, CAO Xiaojun, HU Fei, et al. Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter[J]. IEEE Transactions on Control of Network Systems, 2014, 1(4): 370-379.
doi: 10.1109/TCNS.2014.2357531 URL |
[10] |
AMELI A, HOOSHYAR A, YAZDAVAR A H, et al. Attack Detection for Load Frequency Control Systems Using Stochastic Unknown Input Estimators[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(10): 2575-2590.
doi: 10.1109/TIFS.2018.2824253 URL |
[11] | KHALAF M, YOUSSEF A, EL-SAADANY E. A Particle Filter-Based Approach for the Detection of False Data Injection Attacks on Automatic Generation Control Systems[C]// IEEE. 2018 IEEE Electrical Power and Energy Conference(EPEC). New York:IEEE, 2018: 1-6. |
[12] |
AMELI A, HOOSHYAR A, EL-SAADANY E F, et al. Attack Detection and Identification for Automatic Generation Control Systems[J]. IEEE Transactions on Power Systems, 2018, 33(5): 4760-4774.
doi: 10.1109/TPWRS.59 URL |
[13] |
YANG Qingyu, YANG Jie, YU Wei, et al. On False Data-Injection Attacks Against Power System State Estimation: Modeling and Countermeasures[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 25(3): 717-729.
doi: 10.1109/TPDS.2013.92 URL |
[14] |
SHI Hanzhang, XIE Linbo, WU Zhihai, et al. Detection of False Data Injection Attacks in Power Grid Based on Coding Schemes[J]. Information and Control, 2021, 50(4): 419-426.
doi: 10.13976/j.cnki.xk.2021.0398 |
史晗璋, 谢林柏, 吴治海, 等. 基于编码策略的电网假数据注入攻击检测[J]. 信息与控制, 2021, 50(4): 419-426.
doi: 10.13976/j.cnki.xk.2021.0398 |
|
[15] |
LI Yuancheng, HUANG Rong, MA Longqiang. False Data Injection Attack and Defense Method on Load Frequency Control[J]. IEEE Internet of Things Journal, 2020, 8(4): 2910-2919.
doi: 10.1109/JIoT.6488907 URL |
[16] |
ABBASPOUR A, SARGOLZAEI A, FOROUZANNEZHAD P, et al. Resilient Control Design for Load Frequency Control System Under False Data Injection Attacks[J]. IEEE Transactions on Industrial Electronics, 2019, 67(9): 7951-7962.
doi: 10.1109/TIE.41 URL |
[17] | BI Wenjun, ZHANG Kaifeng, YUAN Kun, et al. Observer-Based Attack Detection and Mitigation for Load Frequency Control System[C]// IEEE. 2019 IEEE Power & Energy Society General Meeting(PESGM). New York:IEEE, 2019: 1-5. |
[18] |
GU Yapei, YU Xiang, GUO Kexin, et al. Detection, Estimation, and Compensation of False Data Injection Attack for UAVs[J]. Information Sciences, 2021, 546: 723-741.
doi: 10.1016/j.ins.2020.08.055 URL |
[19] |
HAN Jinglin, ZHAO Hui, HU Ping, et al. False Data Detection Strategy for Unified Control of Hybrid Microgrid[EB/OL]. (2022-12-14)[2022-12-17]. https://doi.org/10.19635/j.cnki.csu-epsa.001165.
doi: https://doi.org/10.19635/j.cnki.csu-epsa.001165 |
韩璟琳, 赵辉, 胡平, 等. 交直流微电网互联统一控制虚假数据检测策略[EB/OL]. (2022-12-14)[2022-12-17]. https://doi.org/10.19635/j.cnki.csu-epsa.001165.
doi: https://doi.org/10.19635/j.cnki.csu-epsa.001165 |
|
[20] |
MOUSAVIAN S, VALENZUELA J, WANG Jianhui. Real-Time Data Reassurance in Electrical Power Systems Based on Artificial Neural Networks[J]. Electric Power Systems Research, 2013, 96: 285-295.
doi: 10.1016/j.epsr.2012.11.015 URL |
[21] | YANG Fan, CHEN Houjin, LI Jupeng, et al. Single Shot Multibox Detector with Kalman Filter for Online Pedestrian Detection in Video[J]. IEEE Access, 2019: 15478-15488. |
[1] | 冯光升, 张盈希, 任奕菲, 高素林. 无线传感器网络中虚假数据途中过滤技术研究[J]. 信息网络安全, 2023, 23(5): 22-31. |
[2] | 顾兆军, 刘婷婷, 高冰, 隋翯. 基于GAN-Cross的工控系统类不平衡数据异常检测[J]. 信息网络安全, 2022, 22(8): 81-89. |
[3] | 周婧怡, 李红娇. 针对PMU测量的虚假数据注入攻击检测方法[J]. 信息网络安全, 2022, 22(5): 75-83. |
[4] | 徐茹枝, 吕畅冉, 龙燕, 刘远彬. 工业控制系统高隐蔽性数据攻击防御方法研究[J]. 信息网络安全, 2022, 22(12): 34-46. |
[5] | 顾兆军, 姚峰, 丁磊, 隋翯. 基于半实物的机场供油自控系统网络安全测试[J]. 信息网络安全, 2021, 21(9): 16-24. |
[6] | 石乐义, 徐兴华, 刘祎豪, 刘佳. 一种改进概率神经网络的工业控制系统安全态势评估方法[J]. 信息网络安全, 2021, 21(3): 15-25. |
[7] | 杜晔, 王子萌, 黎妹红. 基于优化核极限学习机的工控入侵检测方法[J]. 信息网络安全, 2021, 21(2): 1-9. |
[8] | 李世斌, 李婧, 唐刚, 李艺. 基于HMM的工业控制系统网络安全状态预测与风险评估方法[J]. 信息网络安全, 2020, 20(9): 57-61. |
[9] | 张晓宇, 王华忠. 基于改进Border-SMOTE的不平衡数据工业控制系统入侵检测[J]. 信息网络安全, 2020, 20(7): 70-76. |
[10] | 尚文利, 尹隆, 刘贤达, 赵剑明. 工业控制系统安全可信环境构建技术及应用[J]. 信息网络安全, 2019, 19(6): 1-10. |
[11] | 尚文利, 张修乐, 刘贤达, 尹隆. 工控网络局域可信计算环境构建方法与验证[J]. 信息网络安全, 2019, 19(4): 1-10. |
[12] | 陈瑞滢, 陈泽茂, 王浩. 工业控制系统安全监控协议的设计与优化研究[J]. 信息网络安全, 2019, 19(2): 60-69. |
[13] | 吕宗平, 丁磊, 隋翯, 顾兆军. 基于时间自动机的工业控制系统网络安全风险分析[J]. 信息网络安全, 2019, 19(11): 71-81. |
[14] | 耿欣. 烟草企业工业控制系统安全保障体系研究[J]. 信息网络安全, 2017, 17(9): 34-37. |
[15] | 程冬梅, 严彪, 文辉, 孙利民. 基于规则匹配的分布式工控入侵检测系统设计与实现[J]. 信息网络安全, 2017, 17(7): 45-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||