信息网络安全 ›› 2021, Vol. 21 ›› Issue (3): 15-25.doi: 10.3969/j.issn.1671-1122.2021.03.003

• 技术研究 • 上一篇    下一篇

一种改进概率神经网络的工业控制系统安全态势评估方法

石乐义1,2(), 徐兴华1, 刘祎豪2, 刘佳3   

  1. 1.中国石油大学(华东)海洋与空间信息学院,青岛266580
    2.中国石油大学(华东)计算机科学与技术学院,青岛 266580
    3.国家知识产权局专利局专利审查协作天津中心,天津 300304
  • 收稿日期:2020-11-10 出版日期:2021-03-10 发布日期:2021-03-16
  • 通讯作者: 石乐义 E-mail:shileyi@upc.edu.cn
  • 作者简介:石乐义(1975—),男,山东,教授,博士,主要研究方向为网络安全、博弈论、移动互联网|徐兴华(1997—),男,山东,硕士研究生,主要研究方向为机器学习、网络安全|刘祎豪(1996—),男,江西,硕士研究生,主要研究方向为机器学习、网络安全|刘佳(1995—),女,河北,硕士,主要研究方向为机器学习、网络安全
  • 基金资助:
    国家自然科学基金(61772551);山东省自然科学基金(ZR2019MF034)

An Improved Probabilistic Neural Network Method of Security Situation Assessment for Industrial Control System

SHI Leyi1,2(), XU Xinghua1, LIU Yihao2, LIU Jia3   

  1. 1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
    2. College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
    3. Patent Examination Cooperation (Tianjin) Center of the Patent Office, CNIPA,Tianjin 300304, China
  • Received:2020-11-10 Online:2021-03-10 Published:2021-03-16
  • Contact: SHI Leyi E-mail:shileyi@upc.edu.cn

摘要:

工业控制系统是用于工业环境中监视和控制物理设备的互连设备系统,近年来日益遭受层出不穷的各类新型攻击。针对工业控制系统的运行安全问题,文章提出一种改进概率神经网络的工业控制系统安全态势评估方法。该方法首先对收集到的工控数据进行预处理,并利用主成分分析法对数据进行降维;然后使用改进的果蝇优化算法对概率神经网络的参数进行优化,之后通过优化后的概率神经网络进行训练和预测,得到攻击类型的分类结果;最后结合文章中结构化的工控系统安全态势评估方法计算态势值,对系统的状态进行评估。实验表明,改进后的概率神经网络对攻击类型的分类准确率和精确率分别达到87.784%和96.027%,相比原概率神经网络方法,准确率和精确率分别提高了2.654%和4.820%。

关键词: 工业控制系统, 概率神经网络, 态势感知, 态势评估, 主成分分析法

Abstract:

Industrial control system is interconnected equipment system for monitoring and controlling physical equipment in industrial environments. In recent years, industrial control system has been increasingly exposed to a variety of new attacks. Aiming at the operation safety problem of industrial control system, this paper proposes an improved probabilistic neural network method of security situation assessment for industrial control system. Firstly, the method preprocesses the collected industrial control data and uses principal component analysis to reduce the dimension of the data. Then, the improved fruit flew optimization algorithm is used to optimize the parameters of the probabilistic neural network. After that, This paper used the improved probabilistic neural network for training and prediction to obtain the classification results of attack types. Finally, the situation value is calculated based on the structured security situation assessment method of industrial control system in this paper, and the system state is evaluated. Experiments show that the improved probabilistic neural network's classification accuracy and accuracy of attack types reach 87.784% and 96.027%, respectively. Compared with the original probabilistic neural network method, the accuracy and accuracy are increased by 2.654% and 4.820%, respectively.

Key words: industrial control system, probabilistic neural network, situation awareness, situation assessment, principal component analysis

中图分类号: