信息网络安全 ›› 2020, Vol. 20 ›› Issue (7): 70-76.doi: 10.3969/j.issn.1671-1122.2020.07.008

• 技术研究 • 上一篇    下一篇

基于改进Border-SMOTE的不平衡数据工业控制系统入侵检测

张晓宇, 王华忠()   

  1. 华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海 200237
  • 收稿日期:2020-05-13 出版日期:2020-07-10 发布日期:2020-08-13
  • 通讯作者: 王华忠 E-mail:hzwang@ecust.edu.cn
  • 作者简介:张晓宇(1996—),男,安徽,硕士研究生,主要研究方向为工业系统信息安全|王华忠(1969—),男,江苏,副教授,博士,主要研究方向为工业控制、工控信息安全
  • 基金资助:
    国家自然科学基金(61973119);中央高校基本科研业务费专项资金(222201917006)

Intrusion Detection of ICS Based on Improved Border-SMOTE for Unbalance Data

ZHANG Xiaoyu, WANG Huazhong()   

  1. Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • Received:2020-05-13 Online:2020-07-10 Published:2020-08-13
  • Contact: Huazhong WANG E-mail:hzwang@ecust.edu.cn

摘要:

工业环境中正常与异常样本间的不平衡特点导致入侵检测模型在进行分类时对少数异常样本识别率较低。然而,工控入侵检测模型尤其注重对异常样本的检测成功率,因此文章引入具有自适应思想的边界SMOTE算法,在边界区域根据样本分布情况合理生成少数样本以降低样本的不平衡性。UCI不平衡数据集上的结果证明了该算法的有效性。然后改进边界SMOTE对原始不平衡工控入侵检测数据集SWaT进行数据预处理,在合成合理攻击数据后使用孪生支持向量机(TWSVM)作为分类器构建入侵检测模型。实验结果表明,该方法提高了对攻击样本的识别能力。

关键词: 工业控制系统, 入侵检测, 不平衡数据, Border-SMOTE

Abstract:

In the actual industrial environment, the imbalance between normal and abnormal samples results in the low recognition rate of a few abnormal samples. However, intrusion detection model of industrial control system(ICS) pays special attention to the detection success rate of abnormal samples. Therefore, this paper proposed a Border-SMOTE algorithm based on the introduction of adaptive idea, which generated a small number of samples reasonably according to the sample distribution in the border area. The results on the UCI unbalanced data set show the effectiveness of the improved algorithm. In the process of constructing intrusion detection model of ICS, the original data was preprocessed with improved Border-SMOTE, and TWSVM was used as classifier to identify the attack data after synthesizing reasonable attack data. The experimental results on the unbalanced industrial control data set SWaT show that the proposed model improves the ability of identifying attack samples.

Key words: ICS, intrusion detection, unbalance data, Border-SMOTE

中图分类号: