信息网络安全 ›› 2021, Vol. 21 ›› Issue (2): 1-9.doi: 10.3969/j.issn.1671-1122.2021.02.001

• 等级保护 • 上一篇    下一篇

基于优化核极限学习机的工控入侵检测方法

杜晔, 王子萌(), 黎妹红   

  1. 北京交通大学计算机与信息技术学院,北京 100044
  • 收稿日期:2020-09-28 出版日期:2021-02-10 发布日期:2021-02-23
  • 通讯作者: 王子萌 E-mail:18120483@bjtu.edu.cn
  • 作者简介:杜晔(1978—),男,黑龙江,教授,博士,主要研究方向为保密技术、网络攻防|王子萌(1996—),女,河北,硕士研究生,主要研究方向为工业控制系统安全|黎妹红(1975—),男,湖北,副教授,博士,主要研究方向为保密技术、网络攻防
  • 基金资助:
    国家自然科学基金(61672092);国家教育考试科研项目(GJK2019028)

Industrial Control Intrusion Detection Method Based on Optimized Kernel Extreme Learning Machine

DU Ye, WANG Zimeng(), LI Meihong   

  1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
  • Received:2020-09-28 Online:2021-02-10 Published:2021-02-23
  • Contact: WANG Zimeng E-mail:18120483@bjtu.edu.cn

摘要:

针对现有的工业控制系统入侵检测算法检测时间长,无法满足系统实时性的问题,文章提出一种基于优化核极限学习机(KELM)的工控入侵检测模型,通过改进麻雀搜索算法对KELM的正则化系数C和核参数g进行联合优化。在种群初始化阶段引进佳点集理论增加初始种群的多样性以增强全局搜索能力,提出非线性递减安全值策略并在算法迭代过程引入混沌算法避免陷入局部极小值,以扩展搜索区域。实验结果表明,文章提出的算法具有高检测率、低误报率的优势,能够满足工业控制系统高实时性的要求。

关键词: 麻雀搜索算法, 核极限学习机, 工业控制系统, 入侵检测

Abstract:

In view of the long detection time of the existing industrial control system intrusion detection algorithm, which can’t meet the real-time performance of the system, an industrial control intrusion detection model based on optimized kernel extreme learning machine is proposed. The regularization coefficient C and kernel parameter g of KELM are jointly optimized by an improved sparrow search algorithm. In the population intialization stage, the good point set theory is introduced to increase the diversity of the initial population to enhance the global search ability, and a nonlinear decreasing safety value strategy is proposed. In the algorithm iteration process, a chaotic algorithm is introduced to avoid falling into the local minimum to expand the search area. Experimental results show that this algorithm has the advantages of high detection rate and low false positive rate, and meets the high real-time requirement of industrial control system.

Key words: sparrow search algorithm, kernel extreme learning machine, industrial control system, intrusion detection

中图分类号: