信息网络安全 ›› 2018, Vol. 18 ›› Issue (5): 12-12.doi: 10.3969/j.issn.1671-1122.2018.05.002

• • 上一篇    下一篇

基于马尔可夫预测的连续查询隐私保护方法

张磊1,2, 王斌1,2, 于莉莉2()   

  1. 1. 哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨 150001
    2. 佳木斯大学信息电子技术学院,黑龙江佳木斯 154007
  • 收稿日期:2017-12-22 出版日期:2018-05-15 发布日期:2020-05-11
  • 作者简介:

    作者简介:张磊(1982—),男,黑龙江,博士研究生,主要研究方向为隐私保护;王斌(1979—),男,黑龙江,博士研究生,主要研究方向为机器学习、隐私保护;于莉莉(1975—),女,黑龙江,副教授,硕士,主要研究方向为信息安全、网络安全。

  • 基金资助:
    黑龙江省自然科学基金[F2015022];黑龙江省普通本科高等学校青年创新人才培养计划[UNPYSCT-2017149,UNPYSCT-2017175]

A Markov Prediction-based Algorithm for Continuous Query Privacy Protection

Lei ZHANG1,2, Bin WANG1,2, Lili YU2()   

  1. 1. College of Computer Science and Technology, Harbin Engineering University, Harbin Heilongjiang 150001, China
    2. College of Information Science and Electronic Technology, Jiamusi University, Jiamusi Heilongjiang 154007, China
  • Received:2017-12-22 Online:2018-05-15 Published:2020-05-11

摘要:

针对基于位置服务中攻击者可通过获得各匿名位置的查询概率进而识别申请者的潜在位置的问题,当前已有学者提出通过在查询过程中提交具有相同查询概率的方法进行隐私保护。这些方法虽然在快照查询下一般能够提供较好的隐私保护服务,但在连续查询时大多存在一定的局限性,且当具有相似查询概率的连续位置存在不可到达情况时,攻击者识别出用户真实位置轨迹的概率将会无限扩大。针对这一问题,文章基于马尔可夫预测提出了既能够在连续查询过程中提供查询概率泛化服务,又能够保障具有查询概率泛化能力的位置具有连续可到达性的隐私保护方法。通过该方法可实现在查询概率攻击和不可到达性分析攻击下的连续查询过程中的位置隐私保护。最后,为验证算法的隐私保护能力和执行效率,文章通过安全性分析和实验进一步加以证实,并给出了详细的验证过程和实验结果分析。

关键词: 基于位置服务, 隐私保护, 马尔可夫预测, 查询概率, 泛化

Abstract:

In current, a lot of privacy protection algorithms had been proposed, and these algorithms were mainly designed to resist the attack of query probability correlation. As the adversary can utilize the region of the which query is requested much more than other region to guess the real location of the user, these algorithms can provide service to make the sent query has the same probability in multi-locations, so the location privacy of the user is protected. However, these algorithms were mainly designed for the snapshot query, and they all provide a worse performance in continuous query. Furthermore, because of the locations with the same query probability of the user in the continuous query is difficult to be linked, the adversary can be easier to identify the real location or trajectory with the in-contiguous location in anonymity. Thus, in order to cope with this problem, this paper propose a prediction scheme based Markov chain to provide location privacy protection service. In this scheme, the query probability of the continuous query is generalized, and locations with the similar query probability of per-query are attachable. Protected by our scheme, the user can resist the attack of query probability guess as well as the attack of anonymous locations in-contiguous. At last, security analysis and experimental verification are proposed to further verify the superiority of our scheme, and the detail validation procedure and results analysis are also proposed, so the privacy protection ability and the execution efficiency are verified.

Key words: location-based services, privacy protection, Markov prediction, query probability, generalization

中图分类号: