信息网络安全 ›› 2018, Vol. 18 ›› Issue (3): 14-25.doi: 10.3969/j.issn.1671-1122.2018.03.003

• • 上一篇    下一篇

基于Hash函数的属性泛化隐私保护方案

张磊1,2, 王斌1,2, 于莉莉2()   

  1. 1. 哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨 150001
    2. 佳木斯大学信息电子技术学院,黑龙江佳木斯 154007
  • 收稿日期:2017-12-22 出版日期:2018-03-15 发布日期:2020-05-11
  • 作者简介:

    作者简介:张磊(1982—),男,黑龙江,博士研究生,主要研究方向为隐私保护;王斌(1979—),男,黑龙江,博士研究生,主要研究方向为机器学习、隐私保护;于莉莉(1975—),女,黑龙江,副教授,硕士,主要研究方向为信息安全、网络安全。

  • 基金资助:
    黑龙江省自然科学基金[F2015022];黑龙江省普通本科高等学校青年创新人才培养计划[UNPYSCT-2017149,UNPYSCT-2017175]

A Hash Function-based Attribute Generalization Privacy Protection Scheme

Lei ZHANG1,2, Bin WANG1,2, Lili YU2()   

  1. 1. College of Computer Science and Technology, Harbin Engineering University, Harbin Heilongjiang 150001, China
    2. College of Information Science and Electronic Technology, Jiamusi University, Jiamusi Heilongjiang 154007, China
  • Received:2017-12-22 Online:2018-03-15 Published:2020-05-11

摘要:

针对用户连续查询过程中属性可被关联并获得位置隐私的问题,文章基于属性泛化要求提出了一种基于Hash函数的属性泛化方法。该方法通过由属性转化的Hash值比较寻找具有相同属性的匿名用户,一方面防止具有攻击特性的中心服务器获得用户发送的隐私信息;另一方面通过这种Hash比较简化了相似属性的寻找过程,提高了算法的执行效率。同时,为了证明中心服务器具有潜在的攻击特性,利用博弈树量化的方式证明了中心服务器的不可靠性。最后,通过安全性分析和实验验证,并将文章提出的方法与其他同类算法进行比较,进一步证明了文中算法在隐私保护能力和算法执行效率方面的优势。

关键词: 基于位置服务, 属性泛化, Hash函数, 博弈树, 隐私保护

Abstract:

In order to cope with the problem of attribute can be used as background knowledge to correlate the location privacy by the adversary, then based on the conception of attributes generalization, a Hash based attributes generalization scheme is proposed. With this scheme, attributes are transformed into a fixed Hash value, and then select anonymous users with value comparison. In the procedure of value comparison, the central server cannot get any information about the user as attributes are transformed into a fixed Hash value. Furthermore, the procedure of comparison for similar attributes finding does not need to compare each attribute but just needs to compare the Hash value, and then the performance efficiency is improved. In this paper, for the purpose of verifying the un-trusted of central servers, a game tree was given to infer and quantify the probability of attack. At last, security analysis and simulation experiment were given with other similar algorithms, and the results of verification and comparison were used to further demonstrate the superiority of our proposed scheme in the capability of privacy protection as well as the execution efficiency.

Key words: LBS, attribute generalization, Hash function, game tree, privacy protection

中图分类号: