信息网络安全 ›› 2015, Vol. 15 ›› Issue (3): 19-22.doi: 10.3969/j.issn.1671-1122.2015.03.004

• 技术研究 • 上一篇    下一篇

基于微聚集的a-多样性k-匿名大数据隐私保护

程亮(), 蒋凡   

  1. 中国科学技术大学计算机学院,安徽合肥230027
  • 收稿日期:2015-01-21 出版日期:2015-03-10 发布日期:2015-05-08
  • 作者简介:

    作者简介: 程亮(1991-),男,安徽,硕士研究生主要研究方向:信息安全;;蒋凡(1956-),安徽硕士,教授,主要研究方向:计算机网络,协议与软件测试,信息安全。

  • 基金资助:
    高等学校博士学科点专项科研基金[201134021206];安徽省自然科学基金[1208085QF112];安徽省高等学位优秀青年人才基金[2012SQRL001ZD];中央高校基本科研业务费专项资金[WK2101020004,WK011000007]

a-diversity and k-anonymity Big Data Privacy Preservation Based On Micro-aggregation

CHENG Liang(), JIANG Fan   

  1. School of Computer Science and Technology, University of Science and Technology of China, Hefei Anhui 230027, China
  • Received:2015-01-21 Online:2015-03-10 Published:2015-05-08

摘要:

基于敏感信息的数据发布面临的主要问题在于如何保证数据的有用性和隐私保护。匿名化是一个很好的方法,目前有多种匿名化模型。然而大多数的模型主要侧重于使用预先定义的参数为整个数据集提供无差别的隐私保护,这并不能适应不同个体对不同敏感属性的多样性保护需求。基于此,文章提出了一种满足敏感信息的多样性非相关约束的a-多样性 k-匿名化模型;同时,设计了一个改进的微聚集算法的框架替代了传统的泛化/抑制实现匿名化。使用这个框架,能够提高数据的有用性并降低隐私泄露的风险。通过在真实数据集上进行多次试验验证了此方案的有效性。

关键词: (a,k)-匿名, 多样性保护, 隐私泄漏, 微聚集

Abstract:

A great challenge in privacy preservation is to trade off two important issues: data utility and privacy preservation, in publication of dataset which usually contain sensitive information. Anonymization is a well-represent approach to achieve this, and there exist several anonymity models. Most of those models mainly focus on protecting privacy exerting identical protection for the whole table with pre-defined parameters. This could not meet the diverse requirements of protection degrees varied with different sensitive value. Motivated by this, this paper firstly proposes an a-diversity k-anonymity model to satisfy diversity deassociation for sensitive information, and meanwhile, designs a framework based on an improved microaggregation algorithm, as an alternative to generalization/suppression to achieve anonymization. By using this framework, we improve the data utility and decrease the disclosure risk of privacy disclosure. We conduct several experiments to validate our schemes.

Key words: (a,k)-anonymity, diverse protection, privacy disclosure, microaggregation

中图分类号: