Netinfo Security ›› 2023, Vol. 23 ›› Issue (7): 98-110.doi: 10.3969/j.issn.1671-1122.2023.07.010
Previous Articles Next Articles
CHEN Jing1, PENG Changgen1,2(), TAN Weijie1,2, XU Dequan1
Received:
2023-03-27
Online:
2023-07-10
Published:
2023-07-14
CLC Number:
CHEN Jing, PENG Changgen, TAN Weijie, XU Dequan. A Multi-Server Federation Learning Scheme Based on Differential Privacy and Secret Sharing[J]. Netinfo Security, 2023, 23(7): 98-110.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.07.010
参考系 | 详细设置 |
---|---|
Baseline | plaintext,Epoch=100, |
Case1 | |
Case2 | G,Epoch=100, |
Case3 | |
Case4 |
模型\数据量 | 1000/s | 2000/s | 3000/s | 4000/s | 5000/s | 6000/s |
---|---|---|---|---|---|---|
Baseline | 169.58 | 323.13 | 485.13 | 692.31 | 877.81 | 1147.50 |
Case3 | 409.06 | 767.29 | 1058.05 | 1711.50 | 1893.45 | 2721.17 |
Case4(S=2) | 305.96 | 461.23 | 627.25 | 859.61 | 1049.17 | 1284.53 |
Case4(S=4) | 295.31 | 449.88 | 618.74 | 830.97 | 991.21 | 1280.81 |
Case4(S=6) | 308.74 | 472.37 | 594.17 | 810.15 | 1003.98 | 1274.87 |
Case4(S=8) | 275.63 | 443.73 | 600.08 | 823.97 | 1015.36 | 1250.56 |
Case4(S=10) | 300.53 | 448.04 | 589.04 | 811.54 | 997.42 | 1281.18 |
[1] | GONG Yongqin. From FACEBOOK Personal Data Leak Incident to See the Platform’s Privacy Protection Responsibility[J]. Journal of Beijing Vocational College of Labour, 2018, 12(2): 31-34. |
弓永钦. 从FACEBOOK个人信息泄露事件看平台的隐私保护责任[J]. 北京劳动保障职业学院学报, 2018, 12(2):31-34. | |
[2] | MCMAHAN H B, MOORE E, RAMAGE D, et al. Federated Learning of Deep Networks Using Model Averaging[EB/OL]. (2016-02-17) [2023-03-22]. https://doi.org/10.48550/arXiv.1602.05629. |
[3] | SONG Congzheng, RISTENPART T, SHMATIKOV V. Machine Learning Models that Remember Too Much[C]// ACM. 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 587-601. |
[4] | SHOKRI R, STRONATI M, SONG Congzheng, et al. Membership Inference Attacks Against Machine Learning Models[C]// IEEE. 2017 IEEE Symposium on Security and Privacy(SP). New York: IEEE, 2017: 3-18. |
[5] | WANG Zhibo, SONG Mengkai, ZHANG Zhifei, et al. Beyond Inferring Class Representatives: User-Level Privacy Leakage from Federated Learning[C]// IEEE. IEEE INFOCOM 2019-IEEE Conference on Computer Communications. New York: IEEE, 2019: 2512-2520. |
[6] | LIU Zaoxing, LI Tian, SMITH V, et al. Enhancing the Privacy of Federated Learning with Sketching[EB/OL].(2019-11-05) [2023-03-22].https://doi.org/10.48550/arXiv.1911.01812. |
[7] |
SONG Mengkai, WANG Zhibo, ZHANG Zhifei, et al. Analyzing User-Level Privacy Attack Against Federated Learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(10): 2430-2444.
doi: 10.1109/JSAC.49 URL |
[8] | XIE Wei, WANG Yang, BOKER S M, et al. Privlogit: Efficient Privacy-Preserving Logistic Regression by Tailoring Numerical Optimizers[EB/OL].(2016-11-03) [2023-03-22].https://doi.org/10.48550/arXiv.1611.01170. |
[9] |
PHONG L T, AONO Y, HAYASHI T, et al. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333-1345.
doi: 10.1109/TIFS.2017.2787987 URL |
[10] | HARDY S, HENECKA W, IVEY-LAW H, et al. Private Federated Learning on Vertically Partitioned Data via Entity Resolution and Additively Homomorphic Encryption[EB/OL]. (2017-11-29) [2023-03-22]. https://doi.org/10.48550/arXiv.1711.10677. |
[11] |
LIU Xiaoyuan, LI Hongwei, XU Guowen, et al. Privacy-Enhanced Federated Learning Against Poisoning Adversaries[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4574-4588.
doi: 10.1109/TIFS.2021.3108434 URL |
[12] | SONG lei, MA Chunguang, DUAN Guanghan, et al. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. |
宋蕾, 马春光, 段广晗, 等. 基于数据纵向分布的隐私保护逻辑回归[J]. 计算机研究与发展, 2019, 56(10):2243-2249. | |
[13] | GEYER R C, KLEIN T, NABI M. Differentially Private Federated Learning: A Client Level Perspective[EB/OL]. (2017-12-20) [2023-03-22]. https://doi.org/10.48550/arXiv.1712.07557. |
[14] |
WEI Kang, LI Jun, DING Ming, et al. Federated Learning with Differential Privacy: Algorithms and Performance Analysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3454-3469.
doi: 10.1109/TIFS.2020.2988575 URL |
[15] | BONAWITZ K, IVANOV V, KREUTER B, et al. Practical Secure Aggregation for Privacy-Preserving Machine Learning[C]// ACM. The 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1175-1191. |
[16] | BYRD D, POLYCHRONIADOU A. Differentially Private Secure Multi-Party Computation for Federated Learning in Financial Applications[C]// ACM. The First ACM International Conference on AI in Finance. New York: ACM, 2020: 1-9. |
[17] | JAYARAMAN B, WANG Lingxiao, Evans D, et al. Distributed Learning Without Distress: Privacy-Preserving Empirical Risk Minimization[C]// IEEE. Advances in Neural Information Processing Systems. New York: IEEE, 2018, 31-42. |
[18] | TRUEX S, LIU Ling, CHOW K H, et al. LDP-Fed: Federated Learning with Local Differential Privacy[C]// ACM. 3rd ACM International Workshop on Edge Systems, Analytics and Networking. New York: ACM, 2020: 61-66. |
[19] |
ZHAO Yang, ZHAO Jun, YANG Mengmeng, et al. Local Differential Privacy-Based Federated Learning for Internet of Things[J]. IEEE Internet of Things Journal, 2020, 8(11): 8836-8853.
doi: 10.1109/JIOT.2020.3037194 URL |
[20] | SHI Lu, SHU Jiangang, ZHANG Weizhe, et al. HFL-DP: Hierarchical Federated Learning with Differential Privacy[C]// IEEE. 2021 IEEE Global Communications Conference(GLOBECOM). New York: IEEE, 2021: 1-7. |
[21] | ZHANG Yu, CAI Ying, CUI Jianyang, et al. Gradient Descent with Momentum Algorithm Based on Differential Privacy in Convolutional Neural Network[J]. Journal of Computer Applications, 2023: 1-10. |
张宇, 蔡英, 崔剑阳, 等. 卷积神经网络中基于差分隐私的动量梯度下降算法[J]. 计算机应用, 2023:1-10. | |
[22] | YU Lei, LIU Ling, PU C, et al. Differentially Private Model Publishing for Deep Learning[C]// IEEE. 2019 IEEE Symposium on Security and Privacy(SP). New York: IEEE, 2019: 332-349. |
[23] | HAN Weili, SONG Lushan, RUAN Wenqiang, et al. Secure Multi-Party Learning: From Secure Computation to Secure Learning[J]. Chinese Journal of Computers, 2023: 1-20. |
韩伟力, 宋鲁杉, 阮雯强, 等. 安全多方学习:从安全计算到安全学习[J]. 计算机学报, 2023:1-20. | |
[24] | SAKTHIMOHAN M, ELIZABETH RG, NAVENEETHAKRISHNAN M, et al. Digit Recognition of MNIST Handwritten Using Convolutional Neural Networks[C]// IEEE. 2023 International Conference on Intelligent Systems for Communication, IoT and Security. New York: IEEE, 2023: 328-332. |
[25] | KAYED M, ANTER A, MOHAMED H. Classification of Garments from Fashion MNIST Dataset Using CNN LeNet-5 Architecture[C]// IEEE. 2020 International Conference on Innovative Trends in Communication and Computer Engineering(ITCE). New York: IEEE, 2020: 238-243. |
[1] | XU Chungen, XUE Shaokang, XU Lei, ZHANG Pan. Efficient Neural Network Inference Protocol Based on Secure Two-Party Computation [J]. Netinfo Security, 2023, 23(7): 22-30. |
[2] | LIU Gang, YANG Wenli, WANG Tongli, LI Yang. Differential Privacy-Preserving Dynamic Recommendation Model Based on Cloud Federation [J]. Netinfo Security, 2023, 23(7): 31-43. |
[3] | YANG Yuguang, LU Jiayu. A Dynamic and Hierarchical Quantum Secret Sharing Protocol Based on Starlike Cluster States [J]. Netinfo Security, 2023, 23(6): 34-42. |
[4] | QIN Baodong, CHEN Congzheng, HE Junjie, ZHENG Dong. Multi-Keyword Searchable Encryption Scheme Based on Verifiable Secret Sharing [J]. Netinfo Security, 2023, 23(5): 32-40. |
[5] | PEI Bei, ZHANG Shuihai, LYU Chunli. A Proactive Multi-Secret Sharing Scheme for Cloud Storage [J]. Netinfo Security, 2023, 23(5): 95-104. |
[6] | MA Min, FU Yu, HUANG Kai. A Principal Component Analysis Scheme for Security Outsourcing in Cloud Environment Based on Secret Sharing [J]. Netinfo Security, 2023, 23(4): 61-71. |
[7] | LIU Changjie, SHI Runhua. A Smart Grid Intrusion Detection Model for Secure and Efficient Federated Learning [J]. Netinfo Security, 2023, 23(4): 90-101. |
[8] | ZHANG Xuewang, ZHANG Hao, YAO Yaning, FU Jiali. Privacy Protection Scheme of Consortium Blockchain Based on Group Signature and Homomorphic Encryption [J]. Netinfo Security, 2023, 23(3): 56-61. |
[9] | ZHAO Jia, GAO Ta, ZHANG Jiancheng. Method of Local Differential Privacy Method for High-Dimensional Data Based on Improved Bayesian Network [J]. Netinfo Security, 2023, 23(2): 19-25. |
[10] | LIU Xin, LI Yunyi, WANG Miao. A Lightweight Authentication Protocol Based on Confidential Computing for Federated Learning Nodes [J]. Netinfo Security, 2022, 22(7): 37-45. |
[11] | LYU Guohua, HU Xuexian, YANG Ming, XU Min. Ship AIS Trajectory Classification Algorithm Based on Federated Random Forest [J]. Netinfo Security, 2022, 22(4): 67-76. |
[12] | LIU Feng, YANG Chengyi, YU Xincheng, QI Jiayin. Spectral Graph Convolutional Neural Network for Decentralized Dual Differential Privacy [J]. Netinfo Security, 2022, 22(2): 39-46. |
[13] | LYU Kewei, CHEN Chi. Research on Proactive Generation Protocol of Beaver Triples [J]. Netinfo Security, 2022, 22(12): 16-24. |
[14] | YAN Yan, ZHANG Xiong, FENG Tao. Proportional Differential Privacy Budget Allocation Method for Partition and Publishing of Statistical Big Data [J]. Netinfo Security, 2022, 22(11): 24-35. |
[15] | BAI Hongpeng, DENG Dongxu, XU Guangquan, ZHOU Dexiang. Research on Intrusion Detection Mechanism Based on Federated Learning [J]. Netinfo Security, 2022, 22(1): 46-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||