Netinfo Security ›› 2023, Vol. 23 ›› Issue (7): 31-43.doi: 10.3969/j.issn.1671-1122.2023.07.004
Previous Articles Next Articles
LIU Gang1,2, YANG Wenli1,2(), WANG Tongli1,2, LI Yang1,2
Received:
2023-03-23
Online:
2023-07-10
Published:
2023-07-14
CLC Number:
LIU Gang, YANG Wenli, WANG Tongli, LI Yang. Differential Privacy-Preserving Dynamic Recommendation Model Based on Cloud Federation[J]. Netinfo Security, 2023, 23(7): 31-43.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.07.004
符号 | 说明 |
---|---|
用户集合 | |
物品集合 | |
n | 用户集合总数 |
m | 物品集合总数 |
用户的历史交互行为 | |
用户的历史交互行为序列总数 | |
时间间隔 | |
p | 序列长度 |
用户长期兴趣备选集 | |
用户短期兴趣备选集 |
模型 | 评估指标 | Electronics | Movies and TV | CDs and Vinyl | Subset |
---|---|---|---|---|---|
ASVD | AUC | 0.7727 | 0.8156 | 0.8863 | 0.8060 |
DIN | 0.7927 | 0.8388 | 0.9111 | 0.8293 | |
DIEN | 0.7209 | 0.8438 | 0.9128 | 0.8361 | |
T-LSTM | 0.8212 | 0.8660 | 0.9181 | 0.8387 | |
PACA | 0.8913 | 0.8711 | 0.8832 | 0.8217 | |
TLSAN | 0.9230 | 0.8986 | 0.9651 | 0.8451 | |
RA-NGCF | 0.9254 | 0.8876 | 0.9400 | 0.8421 | |
DEKGCN | 0.9014 | 0.8461 | 0.9036 | 0.8374 | |
P2RCF | 0.9257 | 0.8751 | 0.9139 | 0.8451 | |
ASVD | F1 | 0.7255 | 0.7539 | 0.8128 | 0.7427 |
DIN | 0.7349 | 0.7660 | 0.8348 | 0.7599 | |
DIEN | 0.7327 | 0.7755 | 0.8374 | 0.7632 | |
T-LSTM | 0.7448 | 0.7742 | 0.8352 | 0.7591 | |
PACA | 0.7434 | 0.7549 | 0.8492 | 0.7497 | |
TLSAN | 0.7812 | 0.7820 | 0.8716 | 0.7737 | |
RA-NGCF | 0.7816 | 0.7613 | 0.8543 | 0.7784 | |
DEKGCN | 0.7423 | 0.7571 | 0.8293 | 0.7695 | |
P2RCF | 0.7858 | 0.7820 | 0.8329 | 0.7785 |
[1] | SUN Ke, QIAN Tieyun, CHEN Tong, et al. Where to Go Next: Modeling Long-and Short-Term User Preferences for Point-of-Interest Recommendation[C]// AAAI. AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 214-221. |
[2] | CHEN Ming, WEI Zhewei, HUANG Zengfeng, et al. Simple and Deep Graph Convolutional Networks[C]// IMLS. 37th International Conference on Machine Learning. Vienna: PMLR, 2020: 1725-1735. |
[3] | WU Libing, QUAN Cong, LI Chenliang, et al. A Context-Aware User-Item Representation Learning for Item Recommendation[J]. ACM Transactions on Information Systems, 2019, 37(2): 1-29. |
[4] | CHEN Xusong. Research on Recommendation Algorithm Based on User Behavior Sequence Modeling[D]. Hefei: University of Science and Technology of China, 2021. |
陈旭松. 基于用户行为序列建模的推荐算法研究[D]. 合肥: 中国科学技术大学, 2021. | |
[5] | ZHANG Liyan. Research on Recommendation Algorithm Based on Sequence Feature Extraction[D]. Chengdu: University of Electronic Science and Technology, 2021. |
张李燕. 基于序列特征提取的推荐算法研究[D]. 成都: 电子科技大学, 2021. | |
[6] |
LIN Guanyu, LIANG Feng, PAN Weike, et al. Fedrec: Federated Recommendation with Explicit Feedback[J]. IEEE Intelligent Systems, 2020, 36(5): 21-30.
doi: 10.1109/MIS.2020.3017205 URL |
[7] | LIANG Feng, PAN Weike, MING Zhong. Fedrec++: Lossless Federated Recommendation with Explicit Feedback[C]// AAAI. The AAAI Conference on Artificial Intelligence. New York: AAAI, 2021: 4224-4231. |
[8] | KHAN F K, FLANAGAN A, Tan K E, et al. A Payload Optimization Method for Federated Recommender Systems[C]// ACM. 15th ACM Conference on Recommender Systems. New York: ACM, 2021: 432-442. |
[9] | LUO Sichun, XIAO Yuanzhang, SONG Linqi. Personalized Federated Recommendation via Joint Representation Learning, User Clustering, and Model Adaptation[C]// ACM. 31st ACM International Conference on Information& Knowledge Management. New York: ACM, 2022: 4289-4293. |
[10] | SUN Zehua, XU Yonghui, LIU Yong, et al. A Survey on Federated Recommendation Systems[EB/OL]. (2023-03-09) [2023-03-15]. https://arxiv.org/abs/2301.00767. |
[11] |
LI Xiaoli, LI Yuzheng, WANG Jining, et al. Decentralized Federated Meta-Learning Framework for Few-Shot Multitask Learning[J]. International Journal of Intelligent Systems, 2022, 37(11): 8490-8522.
doi: 10.1002/int.v37.11 URL |
[12] |
ZHANG Feng, XUE Erkang, GUO Ruixin, et al. DS-ADMM++: A Novel Distributed Quantized Admm to Speed up Differentially Private Matrix Factorization[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(6): 1289-1302.
doi: 10.1109/TPDS.2021.3110104 URL |
[13] | CHEN Chaochao, WU Huiwen, SU Jiajie, et al. Differential Private Knowledge Transfer for Privacy-Preserving Cross-Domain Recommendation[C]// ACM. The ACM Web Conference 2022. New York: ACM, 2022: 1455-1465. |
[14] | DENG Wei, CHEN Xiuting, ZHANG Qinghua. Differential Privacy Protection Algorithm Based on Tree Model[J]. Journal of Chongqing University of Posts and Telecommunications, 2020, 32(5): 848-856. |
邓蔚, 陈秀婷, 张清华. 基于树模型的差分隐私保护算法[J]. 重庆邮电大学学报, 2020, 32(5):848-856. | |
[15] |
GUO Taolin, LUO Junzhou, DONG Kai, et al. Locally Differentially Private Item-Based Collaborative Filtering[J]. Information Science. 2019, 502: 229-246.
doi: 10.1016/j.ins.2019.06.021 URL |
[16] | CHEN Gao, CHAO Huang, LIN Dongsheng, et al. DPLCF Differentially Private Local Collaborative Filtering[C]// ACM. 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 961-970. |
[17] |
WANG Yong, YIN Enming, RAN Xun. Differential Privacy Protection Recommendation Algorithm Based on BC Clustering[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(2): 81-88.
doi: 10.13190/j.jbupt.2020-174 |
王永, 尹恩明, 冉旬. 基于BC聚类的差分隐私保护推荐算法[J]. 北京邮电大学学报, 2021, 44(2):81-88.
doi: 10.13190/j.jbupt.2020-174 |
|
[18] | ZHOU Guorui, ZHU Xiaoqiang, SONG Chengru, et al. Deep Interest Network for Click-Through Rate Prediction[C]// ACM. 24th ACM SIGKDD International Conference on Knowledge Discovery& Data Mining. New York: ACM, 2018: 1059-1068. |
[19] | ZHU Yu, LI Hao, LIAO Yikang, et al. What to Do Next: Modeling User Behaviors by Time-LSTM[C]// IJCAI. 26th International Joint Conference on Artificial Intelligence. New York: AAAI, 2017: 3602-3608. |
[20] | ZHOU Guorui, MOU Na, FAN Ying, et al. Deep Interest Evolution Network for Click-Through Rate Prediction[C]// AAAI. 33th AAAI Conference on Artificial Intelligence. New York: AAAI, 2019: 5941-5948. |
[21] |
MOU Luntian, ZHAO Pengfei, XIE Haitao, et al. T-LSTM: A Long Short-Term Memory Neural Network Enhanced by Temporal Information for Traffic Flow Prediction[J]. IEEE Access, 2019, 7: 98053-98060.
doi: 10.1109/ACCESS.2019.2929692 |
[22] |
CAO Yi, ZHANG Weifeng, SONG Bo, et al. Position Aware Context Attention for Session-Based Recommendation[J]. Neurocomputing, 2020, 376: 65-72.
doi: 10.1016/j.neucom.2019.09.016 URL |
[23] | ZHANG Jianqing, WANG Dongjing, YU Dongjin. TLSAN: Time-Aware Long-and Short-Term Attention Network for Next-Item Recommendation[J]. Neurocomputing, 2021, 44(2): 179-191. |
[24] | TANG Jiakai, JIN Jiahui, MIAO Zijia, et al. Region-Aware POI Recommendation with Semantic Spatial Graph[C]// IEEE. 24th International Conference on Computer Supported Cooperative Work in Design. New York: IEEE, 2021: 214-219. |
[25] | LI Xiang, YANG Xingyao, YU Jiong. Double End Knowledge Graph Convolutional Networks for Recommender Systems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184. |
李想, 杨兴耀, 于炯. 基于知识图谱卷积网络的双端推荐算法[J]. 计算机科学与探索, 2022, 16(1):176-184.
doi: 10.3778/j.issn.1673-9418.2103072 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||