[1] |
RATHOR K, PATIL K, TARUN M S, et al. A Novel and Efficient Method to Detect the Face Coverings to Ensure the Safety Using Comparison Analysis[C]// IEEE. The International Conference on Edge Computing and Applications. New York: IEEE, 2022: 1664-1667.
|
[2] |
BHANGALE K, KOTHANDARAMAN M. Speech Emotion Recognition Based on Multiple Acoustic Features and Deep Convolutional Neural Network[J]. Electronics, 2023, 12(4): 839-855.
doi: 10.3390/electronics12040839
URL
|
[3] |
ZHANG Ge, ZHEN Peng, YAN Chaokun, et al. A Novel Liver Cancer Diagnosis Method Based on Patient Similarity Network and DenseGCN[EB/OL]. (2022-12-01) [2023-01-15]. https://www.nature.com/arti-cles/s41598-022-10441-3.
|
[4] |
ZIOVIRIS G, KOLOMVATSOS K, STAMOULIS G. Credit Card Fraud Detection Using a Deep Learning Multistage Model[J]. The Journal of Supercomputing, 2022, 78(12): 14571-14596.
doi: 10.1007/s11227-022-04465-9
|
[5] |
YAO A C. Protocols for Secure Computations[C]// IEEE. 23rd Annual Symposium on Foundations of Computer Science. New York: IEEE, 1982: 160-164.
|
[6] |
BOGETOFT P, CHRISTENSEN D L, DAMGARD I, et al. Secure Multiparty Computation Goes Live[C]// Springer. 13th International Conference on Financial Cryptography and Data Security. Heidelberg: Springer, 2009: 325-343.
|
[7] |
MA J P, CHOW S. Secure-Computation-Friendly Private Set Intersection from Oblivious Compact Graph Evaluation[C]// ACM. 2022 ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2022: 1086-1097.
|
[8] |
SPERLING L, RATHA N, ROSS A, et al. HEFT: Homomorphically Encrypted Fusion of Biometric Templates[C]// IEEE. 2022 IEEE International Joint Conference on Biometrics. New York: IEEE, 2022: 1-10.
|
[9] |
MOHASSEL P, ZHANG Yupeng. Secureml: A System for Scalable Privacy-Preserving Machine Learning[C]// IEEE. 2017 IEEE Symposium on Security and Privacy. New York: IEEE, 2017: 19-38.
|
[10] |
RIAZI M S, WEINERT C, TKACHENKO O, et al. Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications[C]// ACM. The 2018 on Asia Conference on Computer and Communications Security. New York: ACM, 2018: 707-721.
|
[11] |
JUVEKAR C, VAIKUNTANATHAN V, CHANDRAKASAN A. Gazelle: A Low Latency Framework for Secure Neural Network Inference[C]// USENIX. 27th USENIX Security Symposium. Baltimore: USENIX Association, 2018: 1651-1669.
|
[12] |
GARAY J A, SCHOENMAKERS B, VILLEGAS J. Practical and Secure Solutions for Integer Comparison[C]// Springer. 10th International Conference on Practice and Theory in Public-Key Cryptography. Heidelberg: Springer, 2007: 330-342.
|
[13] |
RABIN M O. How to Exchange Secrets with Oblivious Transfer[EB/OL]. [2023-01-15]. https://e-print.iacr.org/2005/187.pdf.
|
[14] |
ASHAROV G, LINDELL Y, SCHNEIDER T, et al. More Efficient Oblivious Transfer and Extensions for Faster Secure Computation[C]// ACM. 2013 ACM SIGSAC Conference on Computer & Communications Security. New York: ACM, 2013: 535-548.
|
[15] |
SHAMIR A. How to Share a Secret[C]// ACM. Communications of the ACM. New York: ACM, 1979: 612-613.
|
[16] |
BEAVER D. Precomputing Oblivious Transfer[C]// Springer. 15th Annual International Cryptology Conference. Heidelberg: Springer, 1995: 97-109.
|
[17] |
DAMGARD I, PASTRO V, SMART N, et al. Multiparty Computation from Somewhat Homomorphic Encryption[C]// Springer. 32nd Annual Cryptology Conference. Heidelberg: Springer, 2012: 643-662.
|
[18] |
YANG Kang, WENG Chenkai, LAN Xiao, et al. Ferret: Fast Extension for Correlated OT with Small Communication[C]// ACM. 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 1607-1626.
|
[19] |
RATHEE D, RATHEE M, KUMAR N, et al. Cryptflow2: Practical 2--Party Secure Inference[C]// ACM. The 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 325-342.
|
[20] |
GOLDWASSER S, MICALI S. Probabilistic Encryption[J]. Journal of Computer and System Sciences, 1984, 28(2): 270-299.
doi: 10.1016/0022-0000(84)90070-9
URL
|
[21] |
LIU Jian, JUUTI M, LU Yu, et al. Oblivious Neural Network Predictions via Minionn Transformations[C]// ACM. 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 619-631.
|
[22] |
LIU Xiaoning, ZHENG Yifeng, YUAN Xingliang, et al. Medisc: Towards Secure and Lightweight Deep Learning as a Medical Diagnostic Service[C]// Springer. European Symposium on Research in Computer Security. Heidelberg: Springer, 2021: 519-541.
|
[23] |
WAGH S, TOPLE S, BENHAMOUDA F, et al. Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning[C]// Springer. Proceedings on Privacy Enhancing Technologies. Heidelberg: Springer, 2021: 188-208.
|
[24] |
MISHRA M, LEHMKUHL R, SRINIVASAN A, et al. Delphi: A Cryptographic Inference Service for Neural Networks[C]// USENIX. 29th USENIX Security Symposium. California: USENIX Association, 2020: 2505-2522.
|