Netinfo Security ›› 2020, Vol. 20 ›› Issue (2): 14-21.doi: 10.3969/j.issn.1671-1122.2020.02.003
• 技术研究 • Previous Articles Next Articles
Received:
2019-08-15
Online:
2020-02-10
Published:
2020-05-11
CLC Number:
LUO Wenhua, XU Caidian. Network Intrusion Detection Based on Improved MajorClust Clustering[J]. Netinfo Security, 2020, 20(2): 14-21.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2020.02.003
特征序号 | 特征名称 | 描述 | 抽样数据 |
---|---|---|---|
6 | Dst_bytes | 在单个连接中,从目标主机到源主机传输的数据字节数 | 0 |
12 | Logged_in | 登录状态:如果成功登录,值为1;否则为0 | 1 |
23 | Count | 在过去两秒内,与当前连接拥有相同目标主机的连接数 | 1 |
24 | Srv_count | 在过去两秒内,与当前连接拥有相同服务(端口号)的连接数 | 2 |
25 | Serror_rate | 已激活标志(4属性)S0、S1、S2或S3的连接数量在连接数(23属性)集合中的百分比 | 0 |
26 | Srv_serror_rate | 已激活标志(4属性)S0、S1、S2或S3的连接数量在服务数(24属性)集合中的百分比 | 0 |
29 | Same_srv_rate | 同一服务的连接数量在连接数(23属性)集合中的百分比 | 1 |
30 | Diff_srv_rate | 不同服务的连接数量在连接数(23属性)集合中的百分比 | 0 |
31 | Srv_diff_host_rate | 在服务数(24属性)集合中,不同目标主机的连接所占百分比 | 0 |
32 | Dst_host_count | 拥有相同目的IP地址的连接数 | 150 |
33 | Dst_host_srv_count | 拥有同目的端口号的连接数 | 25 |
34 | Dst_host_same_srv_rate | 在目的主机连接数(32属性)集合中,同一服务连接所占的百分比 | 0.17 |
35 | Dst_host_diff_srv_rate | 在目的主机连接数(32属性)集合中,不同服务连接所占的百分比 | 0.03 |
36 | Dst_host_same_src_port_rate | 在目的主机服务数(33属性)集合中,相同源端口号的连接所占的百分比 | 0.17 |
37 | Dst_host_srv_diff_host_rate | 在目的主机服务数(33属性)集合中,不同源端口号的连接所占的百分比 | 0 |
38 | Dst_host_serror_rate | 已激活标志(4属性)S0、S1、S2或S3的连接数量在目的主机连接数(32属性)集合中的百分比 | 0.15 |
39 | Dst_host_srv_serror_rate | 已激活标志(4属性)S0、S1、S2或S3的连接数量在目的主机服务数(33属性)集合中的百分比 | 0.23 |
入侵类别测试 | DoS | Probe | R2L | U2R | 全部类别 | |
---|---|---|---|---|---|---|
第一次测试 | 已知入侵 | 97.84% | 95.94% | 73.21% | 25.00% | 87.78% |
未知入侵 | 98.75% | 90.16% | 86.51% | 40.00% | 92.62% | |
第二次测试 | 已知入侵 | 93.35% | 79.44% | 79.72% | 58.33% | 88.16% |
未知入侵 | 94.54% | 81.75% | 94.12% | 26.67% | 89.03% | |
第三次测试 | 已知入侵 | 90.18% | 76.85% | 82.09% | 38.46% | 86.41% |
未知入侵 | 99.69% | 82.52% | 94.58% | 21.05% | 91.37% | |
第四次测试 | 已知入侵 | 94.06% | 79.43% | 79.53% | 33.33% | 88.48% |
未知入侵 | 93.14% | 81.93% | 92.73% | 33.33% | 88.30% |
[1] | ZHANG Ran, QIAN Depei, ZHANG Wenjie, et al.A Survey of Intrusion Detection Technology Research[J]. Mini-micro Systems, 2003, 27(7): 1113-1118. |
张然,钱德沛,张文杰,等.入侵检测技术研究综述[J]. 小型微型计算机系统,2003,27(7):1113-1118. | |
[2] | LIU Bailu, YANG Yahui, SHEN Qingni.Research and Implementation of Early Detection Method of Network Intrusion[J]. Computer Engineering, 2013, 39(7): 1-6. |
刘白璐,杨雅辉,沈晴霓.网络入侵早期检测方法的研究与实现[J]. 计算机工程,2013,39(7):1-6. | |
[3] | LIN Weichao, KE Shihwen, TSAI C F.CANN: An Intrusion Detection System Based on Combining Clustercenters and Nearest Neighbors[J]. Knowledge-based Systems, 2015, 78(5): 13-21. |
[4] | WU Liyun, LI Shenglin, GAN Xusheng, et al.CVM Model of Network Abnormal Intrusion Detection Based on PLS Feature Extraction[J]. Control and Decision, 2017, 32(4): 755-758. |
吴丽云,李生林,甘旭升,等.基于PLS特征提取的网络异常入侵检测CVM模型[J]. 控制与决策,2017,32(4):755-758. | |
[5] | WANG Sheng, JIN Zhigang. IDS Classification Algorithm Based on Fuzzy SVM Models[EB/OL]. , 2019-7-15. |
汪生,金志刚.基于模糊SVM 模型的入侵检测分类算法[EB/OL]., 2019-7-15. | |
[6] | JIANG Yan, GAO Jia, CHEN Tieming.Intrusion Detection Method Based on AE-BNDNN Model[J]. Mini-micro Systems, 2019, 40(8): 1713-1717. |
江颉,高甲,陈铁明.基于AE-BNDNN模型的入侵检测方法[J]. 小型微型计算机系统,2019,40(8):1713-1717. | |
[7] | LI Yun, LIU Xuecheng. Research on Unsupervised Intrusion Detection Algorithm Based on Clustering[J]. Computer Applications and Software, 2014, 31(8): 307-310. |
李云,刘学诚.基于聚类的无监督式入侵检测算法研究[J]. 计算机应用与软件,2014,31(8):307-310. | |
[8] | ZHU Yi, ZHANG Qi.Application of Machine Learning in Network Intrusion Detection[J]. Journal of Data Acquisition and Processing, 2017, 32(3): 479-488. |
朱琨,张琪.机器学习在网络入侵检测中的应用[J]. 数据采集与处理,2017,32(3):479-488. | |
[9] | LUO Min, WANG Lina, ZHANG Huanguo.Intrusion Detection Method Based on Unsupervised Clustering[J]. Acta Electronica Sinica, 2003, 31(11): 1713-1716. |
罗敏,王丽娜,张焕国.基于无监督聚类的入侵检测方法[J]. 电子学报,2003,31(11):1713-1716. | |
[10] | STEIN B, NIGGEMANN O.On the Nature of Structure and Its Identification[C]//ETH Zvrich. The 25th International Workshop on Graph-Theoretic Concepts in Computer Science, June 17-19, 1999, Monte Verta, Switzerland. Tokyo: Springer-Verlag, 1999:122-134. |
[11] | ZHANG Lei, CUI Yong, LIU Jing, et al.Application of Machine Learning in Cyberspace Security Research[J]. Chinese Journal of Computers, 2018,41(9):1943-1975. |
张蕾,崔勇,刘静,等.机器学习在网络空间安全研究中的应用[J]. 计算机学报, 2018,41(9):1943-1975. | |
[12] | LUO Wenhua, ZHANG Yan.Using Improved MajorClust Algorithm to Locate Abnormal User Behaviors[J]. Mini-micro Systems, 2019, 40(11): 2374-2379. |
罗文华,张艳.利用改进的MajorClust算法实现异常用户行为定位[J]. 小型微型计算机系统,2019,40(11):2374-2379. | |
[13] | HUDAN S, CHRISTIAN P, FERDOUS S.Graph Clustering and Anomaly Detection of Access Control log for Forensic Purposes[J]. Digital Investigation, 2017, 21(6): 76-87. |
[14] | QIAO Lishan, WANG Yulan, ZENG Jinguang.Discussion on Curve Fitting Method in Experimental Data Processing[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(1):91-95. |
乔立山,王玉兰,曾锦光.实验数据处理中曲线拟合方法探讨[J]. 成都理工大学学报(自然科学版),2004,31(1):91-95. | |
[15] | MAHBOD T, EBRAHIM B, WEI L, et al.A Detailed Analysis of the KDD CUP 99 Data Set[C]//IEEE. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, July 8-10, 2009, Ottawa, ON, Canada. New York:IEEE, 2009:1-5. |
[16] | DHANABAL L, SHANTHARAJAH S P.A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015,4(6):446-452. |
[17] | ZHANG Xueqin, GU Chunhua, LIN Jiajin.Intrusion Detection System Based on Featureselection and Support Vector Machine[C]//IEEE. 2006 First International Conference on Communications and Networking in China, October 25-27, 2006, Beijing, China. New York:IEEE, 2007:1-5. |
[18] | THANH N T, KLAUDIA D, MICHAL D.Revised DBSCAN Algorithm to Cluster Data with Dense Adjacent Clusters[J]. Chemometrics and Intelligent Laboratory Systems, 2013,120(1): 92-96. |
[19] | ZHOU Zhihua.Machine Learning[M]. Beijing: Tsinghua University Press, 2016. |
周志华. 机器学习[M].北京:清华大学出版社,2016. | |
[20] | FENG Shaorong, XIAO Wenjun.An Improved DBSCAN Clustering Algorithm[J]. Journal of China University of Mining & Technology, 2008, 31(1):105-111. |
冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J]. 中国矿业大学学报,2008,31(1):105-111. |
[1] | LI Qiao, LONG Chun, WEI Jinxia, ZHAO Jing. A Hybrid Model of Intrusion Detection Based on LMDR and CNN [J]. Netinfo Security, 2020, 20(9): 117-121. |
[2] | JIANG Nan, CUI Yaohui, WANG Jian, WU Jinchao. Context-based Attack Scenario Reconstruction Model for IDS Alarms [J]. Netinfo Security, 2020, 20(7): 1-10. |
[3] | ZHANG Xiaoyu, WANG Huazhong. Intrusion Detection of ICS Based on Improved Border-SMOTE for Unbalance Data [J]. Netinfo Security, 2020, 20(7): 70-76. |
[4] | PENG Zhonglian, WAN Wei, JING Tao, WEI Jinxia. Research on Intrusion Detection Method Based on Modified CGANs [J]. Netinfo Security, 2020, 20(5): 47-56. |
[5] | WANG Rong, MA Chunguang, WU Peng. An Intrusion Detection Method Based on Federated Learning and Convolutional Neural Network [J]. Netinfo Security, 2020, 20(4): 47-54. |
[6] | Jian KANG, Jie WANG, Zhengxu LI, Guangda ZHANG. A Model for Anomaly Intrusion Detection with Different Feature Extraction Strategies in IoT [J]. Netinfo Security, 2019, 19(9): 21-25. |
[7] | Wenying FENG, Xiaobo GUO, Yuanye HE, Cong XUE. Intrusion Detection Model Based on Feedforward Neural Network [J]. Netinfo Security, 2019, 19(9): 101-105. |
[8] | Xuli RAO, Pengna XU, Zhide CHEN, Li XU. Network Intrusion Detection with Incomplete Information Based on Deep Learning [J]. Netinfo Security, 2019, 19(6): 53-60. |
[9] | Jinghao LIU, Siping MAO, Xiaomei FU. Intrusion Detection Model Based on ICA Algorithm and Deep Neural Network [J]. Netinfo Security, 2019, 19(3): 1-10. |
[10] | Hong CHEN, Yue XIAO, Chenglong XIAO, Jianhu CHEN. The Intrusion Detection Method of SMOTE Algorithm with Maximum Dissimilarity Coefficient Density [J]. Netinfo Security, 2019, 19(3): 61-71. |
[11] | Zheng TIAN, Shu LI, Yizhen SUN, Xi LI. Industrial Control System Intrusion Detection Model Based on S7 Protocol [J]. Netinfo Security, 2019, 19(11): 8-13. |
[12] | Yang ZHANG, Yuangang YAO. Research on Network Intrusion Detection Based on Xgboost [J]. Netinfo Security, 2018, 18(9): 102-105. |
[13] | Gelin ZHANG, Yong LI. Non-negative Matrix Factorization Optimization and Its Application in Network Intrusion Detection [J]. Netinfo Security, 2018, 18(8): 73-78. |
[14] | Shuning WEI, Xingru CHEN, Yong JIAO, Jin WANG. Research on the Application of AR-OSELM Algorithm in Network Intrusion Detection [J]. Netinfo Security, 2018, 18(6): 1-6. |
[15] | Xiang HE, Sheng LIU, Jiguo JIANG. Comparative Study of Intrusion Detection Methods Based on Machine Learning [J]. Netinfo Security, 2018, 18(5): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||