Netinfo Security ›› 2025, Vol. 25 ›› Issue (9): 1397-1406.doi: 10.3969/j.issn.1671-1122.2025.09.008
Previous Articles Next Articles
ZHAO Wenyu1, DANG Chenxi2,3, DU Zhenhua4, ZHANG Jian2,3(
)
Received:2025-06-15
Online:2025-09-10
Published:2025-09-18
CLC Number:
ZHAO Wenyu, DANG Chenxi, DU Zhenhua, ZHANG Jian. Research and Implementation of Ransomware Detection Technology Based on Hardware Performance Counters[J]. Netinfo Security, 2025, 25(9): 1397-1406.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.09.008
| 模型 | 独立训练 | Accuracy | Precision | Recall | F1 | MCC | FPR | FNR |
|---|---|---|---|---|---|---|---|---|
| EGB | 1 | 96.65% | 95.33% | 95.20% | 96.73% | 94.08% | 2.67% | 1.83% |
| 2 | 96.55% | 96.57% | 95.84% | 95.18% | 93.65% | 3.77% | 1.32% | |
| 3 | 95.12% | 96.74% | 95.90% | 95.80% | 94.09% | 2.98% | 2.11% | |
| 平均 | 96.10% | 96.21% | 95.64% | 95.90% | 93.94% | 3.14% | 1.75% | |
| 本文模型 | 1 | 99.28% | 99.21% | 99.37% | 99.41% | 99.11% | 0.84% | 0.35% |
| 2 | 99.17% | 99.45% | 99.45% | 99.49% | 98.29% | 1.02% | 0.78% | |
| 3 | 99.63% | 99.39% | 98.54% | 99.24% | 98.79% | 0.009% | 0.64% | |
| 平均 | 99.36% | 99.35% | 99.12% | 99.38% | 98.73% | 0.92% | 0.59% |
| [1] | 360 Digital Security Group. 2024 Ransomware Trends Report[EB/OL]. (2025-01-09)[2025-05-20]. https://360.cn/n/12648.html. |
| [2] | Cybersecurity Ventures. 2024 Cybersecurity Almanac: 100 Facts, Figures, Predictions And Statistics[EB/OL]. (2024-06-24)[2025-05-20]. https://cybersecurityventures.com/cybersecurity-almanac-2024/. |
| [3] | KHARAZ A, ARSHAD S, MULLINER C, et al. UNVEIL:A Large-Scale, Automated Approach to Detecting Ransomware[C]// USENIX. 25th USENIX Security Symposium (USENIX Security 16). Berkeley: USENIX Association, 2016: 757-772. |
| [4] | SCAIFE N, CARTER H, TRAYNOR P, et al. Cryptolock (and Drop It): Stopping Ransomware Attacks on User Data[C]// IEEE. 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS). New York: IEEE, 2016: 303-312. |
| [5] | CHEN ZhiGuo, KANG H S, YIN Shangnan, et al. Automatic Ransomware Detection and Analysis Based on Dynamic API Calls Flow Graph[C]// ACM. The International Conference on Research in Adaptive and Convergent Systems. New York: ACM, 2017: 196-201. |
| [6] | LEE J, JEONG K, LEE H. Detecting Metamorphic Malwares Using Code Graphs[C]// ACM. The 2010 ACM Symposium on Applied Computing. New York: ACM, 2010: 1970-1977. |
| [7] | KOK S H, ABDULLAH A, JHANJHI N Z, et al. Prevention of Crypto-Ransomware Using a Pre-Encryption Detection Algorithm[J]. Computers, 2019, 8(4): 79-94. |
| [8] | ALHAWI O M K, BALDWIN J, DEHGHANTANHA A. Leveraging Machine Learning Techniques for Windows Ransomware Network Traffic Detection[J]. Cyber Threat Intelligence, 2018: 93-106. |
| [9] | ZHOU Boyou, GUPTA A, JAHANSHAHI R, et al. Hardware Performance Counters can Detect Malware: Myth or Fact?[C]// ACM. The 2018 on Asia Conference on Computer and Communications Security. New York: ACM, 2018: 457-468. |
| [10] | ZHOU Hongwei, WU Xin, SHI Wenchang, et al. HDROP: Detecting ROP Attacks Using Performance Monitoring Counters[C]// Springer. International Conference on Information Security Practice and Experience. Heidelberg: Springer, 2014: 172-186. |
| [11] | HERATH N, FOGH A. CPU Hardware Performance Counters for Security[EB/OL]. (2015-08-01)[2025-08-20]. https://www.blackhat.com/us-15/briefings.html. |
| [12] | CARVALHO DE MELO A. The New Linux Perf Tools[J]. Slides from Linux Kongress. 2010, 18(1): 1-42. |
| [13] | ALAM M, BHATTACHARYA S, DUTTA S, et al. RATAFIA: Ransomware Analysis Using Time and Frequency Informed Autoencoders[C]// IEEE. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). New York: IEEE, 2019: 218-227. |
| [14] | WANG Xueyang, CHAI S, ISNARDI M, et al. Hardware Performance Counter-Based Malware Identification and Detection with Adaptive Compressive Sensing[J]. ACM Transactions on Architecture and Code Optimization (TACO), 2016, 13(1): 1-23. |
| [15] | DEMME J, MAYCOCK M, SCHMITZ J, et al. On the Feasibility of Online Malware Detection with Performance Counters[J]. ACM SIGARCH Computer Architecture News, 2013, 41(3): 559-570. |
| [16] | KAZDAGLI M, REDDI V J, TIWARI M. Quantifying and Improving the Efficiency of Hardware-Based Mobile Malware Detectors[C]// IEEE. 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). New York: IEEE, 2016: 1-13. |
| [17] | KRISHNAMURTHY P, RAMESH K, FAARSHAD K. Anomaly Detection in Real-Time Multi-Threaded Processes Using Hardware Performance Counters[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 666-680. |
| [18] | HE Zhangying, HOUMAN H, HOSSEIN S. Beyond Conventional Defenses: Proactive and Adversarial-Resilient Hardware Malware Detection Using Deep Reinforcement Learning[C]// ACM. The 61st ACM/IEEE Design Automation Conference. New York: ACM, 2024: 1-6. |
| [19] | LI Congmiao, GAUDIOT J L. Detecting Spectre Attacks Using Hardware Performance Counters[J]. IEEE Transactions on Computers, 2022, 71(6): 1320-1331. |
| [20] | GANFURE G O, WU Chunfeng, CHANG Yuanhao, et al. Deepware: Imaging Performance Counters with Deep Learning to Detect Ransomware[J]. IEEE Transactions on Computers, 2022, 72(3): 600-613. |
| [21] |
HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
| [22] | GRAVES A. Supervised Sequence Labelling with Recurrent Neural Networks[M]. Heidelberg: Springer, 2012. |
| [23] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Curran Associates Inc. Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc, 2017: 6000-6010. |
| [24] | AURANGZEB S, RAIS R N B, ALEEM M, et al. On the Classification of Microsoft-Windows Ransomware Using Hardware Profile[EB/OL]. (2021-02-02) [2025-08-20]. https://peerj.com/articles/cs-361/#intro. |
| [1] | ZHAN Dongyang, HUANG Zilong, TAN Kai, YU Zhaofeng, HE Zheng, ZHANG Hongli. Cross-Function Behavior Analysis and Constraint Technology for Serverless Applications [J]. Netinfo Security, 2025, 25(9): 1329-1337. |
| [2] | CAO Jun, XIANG Ga, REN Yawei, TAN Zicheng, YANG Qunsheng. Small-Sample APT Attack Event Extraction Method Based on Large Model [J]. Netinfo Security, 2025, 25(9): 1338-1347. |
| [3] | HU Yucui, GAO Haotian, ZHANG Jie, YU Hang, YANG Bin, FAN Xuejian. Automated Exploitation of Vulnerabilities in Vehicle Network Security [J]. Netinfo Security, 2025, 25(9): 1348-1356. |
| [4] | XUE Lei, ZHANG Jican, DU Pingxin. Intelligent Binary Analysis Method Based on Enhanced Semantic Program Dependency Graph [J]. Netinfo Security, 2025, 25(9): 1357-1366. |
| [5] | XU Ruzhi, WU Xiaoxin, LYU Changran. Research on Transformer-Based Super-Resolution Network Adversarial Sample Defense Method [J]. Netinfo Security, 2025, 25(9): 1367-1376. |
| [6] | LIU Hui, ZHU Zhengdao, WANG Songhe, WU Yongcheng, HUANG Linquan. Jailbreak Detection for Large Language Model Based on Deep Semantic Mining [J]. Netinfo Security, 2025, 25(9): 1377-1384. |
| [7] | WANG Lei, CHEN Jiongyi, WANG Jian, FENG Yuan. Intelligent Reverse Analysis Method of Firmware Program Interaction Relationships Based on Taint Analysis and Textual Semantics [J]. Netinfo Security, 2025, 25(9): 1385-1396. |
| [8] | YANG Yukun, XIAO Weien, LIANG Boxuan, HUANG Xin. Dynamic Three-Factor Authentication Key Agreement Protocol for IoT Scenarios [J]. Netinfo Security, 2025, 25(9): 1407-1417. |
| [9] | CHEN Xianyi, WANG Xuebo, CUI Qi, FU Zhangjie, WANG Qianqian, ZENG Yifu. Overview of Backdoor Attacks and Defenses in Personalized Federated Learning [J]. Netinfo Security, 2025, 25(9): 1418-1438. |
| [10] | SHI Yijuan, ZHOU Danping, FAN Lei, LIU Yin. Secure Multi-Party Computation Protocol Based on Trusted Execution Environment [J]. Netinfo Security, 2025, 25(9): 1439-1446. |
| [11] | YANG Jianxin, WANG Xiaoding, LIN Hui. Improved Consensus Algorithm Based on HotStuff and Multi-Ary Trees [J]. Netinfo Security, 2025, 25(9): 1447-1455. |
| [12] | CHEN Yonghao, CAI Manchun, ZHANG Yiwen, PENG Shufan, YAO Lifeng, ZHU Yi. A Multi-Scale and Multi-Level Feature Fusion Approach for Deepfake Face Detection [J]. Netinfo Security, 2025, 25(9): 1456-1464. |
| [13] | WANG Xinmeng, CHEN Junbao, YANG Yitao, LI Wenjin, GU Dujuan. Bayesian Optimized DAE-MLP Malicious Traffic Identification Model [J]. Netinfo Security, 2025, 25(9): 1465-1472. |
| [14] | CAO Yue, FANG Boying, WEI Gaoda, LI Jinyu, YANG Yang, PENG Tao. Compatibility Evaluation and Optimization of CAN Bus Intrusion Detection Systems in In-Vehicle Ethernet Environment [J]. Netinfo Security, 2025, 25(8): 1175-1195. |
| [15] | LU Xinxi, GUO Jianwei, YUAN Lijuan, LIU Yan, XU Binbin, LIU Yang. Research on Container Security Framework Based on Namespace and Filesystem Proxy [J]. Netinfo Security, 2025, 25(8): 1196-1207. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||