[1] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// AISTATS. 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282.
|
[2] |
ZHANG L. Federated Learning-Cracking the Smart Healthcare Data Security Privacy Puzzle[EB/OL]. (2020-08-04)[2024-04-20]. https://zhuanlan.zhihu.com/p/166482616.
|
[3] |
LI Qinbin, DIAO Yiqun, CHEN Quan, et al. Federated Learning on Non-IID Data Silos: An Experimental Study[C]// IEEE. 38th International Conference on Data Engineering (ICDE). New York: IEEE, 2022: 965-978.
|
[4] |
GONG Yanxia. Research on Personalized Method of Federated Learning in Heterogeneous Scenario[D]. GuiLin: Guangxi Normal University, 2023.
|
|
龚艳霞. 异质场景下联邦学习的个性化方法研究[D]. 桂林: 广西师范大学, 2023.
|
[5] |
HUANG Hua. Research on Key Technologies of Federated Learning with Heterogeneous Data[D]. Xi’an: Xidian University, 2022.
|
|
黄华. 异质性数据的联邦学习关键技术研究[D]. 西安: 西安电子科技大学, 2022.
|
[6] |
SHEN Tao, KUANG Kun, WU Chao, et al. The Challenge of Heterogeneity in Privacy Computing: Exploring the Co-Optimization Problem of Federated Learning in Distributed Heterogeneous Environments[J]. Artificial Intelligence, 2023(6): 1-13.
|
|
沈弢, 况琨, 吴超, 等. 隐私计算中的异质性挑战:探索分布式异质环境下联邦学习的协同优化问题[J]. 人工智能, 2023(6): 1-13.
|
[7] |
ZHAN Fan. Research on Weighted Federated Distillation Algorithm for Non-IID Data[D]. Wuhan: Huazhong University of Science and Technology, 2022.
|
|
詹帆. 面向非独立同分布数据的加权联邦蒸馏算法研究[D]. 武汉: 华中科技大学, 2022.
|
[8] |
CHEN Xuebin, REN Zhiqiang. PFKD: A Personalized Federated Learning Framework that Integrates Data Heterogeneity and Model Heterogeneity[J]. Journal of Nanjing University of Information Science & Technology, 2024, 16(4): 513-519.
|
|
陈学斌, 任志强. PFKD: 综合考虑数据异构和模型异构的个性化联邦学习框架[J]. 南京信息工程大学学报, 2024, 16(4): 513-519.
|
[9] |
LIN Tao, KONG Lingjing, STICH S U, et al. Ensemble Distillation for Robust Model Fusion in Federated Learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 2351-2363.
|
[10] |
YANG Qiang. A Study of Image Classification Algorithm Based on Heterogeneous Federated Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023.
|
|
杨强. 基于异构联邦学习的图像分类算法研究[D]. 成都: 电子科技大学, 2023.
|
[11] |
ZHUANG Yulin, LYU Lingjuan, SHI Chuan, et al. Data-Free Adversarial Knowledge Distillation for Graph Neural Networks[C]// IJCAI. 31st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2022: 2441-2447.
|
[12] |
ZHU Zhuangdi, HONG Junyuan, ZHOU Jiayu. Data-Free Knowledge Distillation for Heterogeneous Federated Learning[C]// ICML. 38th International Conference on Machine Learning. New York: PMLR, 2021: 12878-12889.
|
[13] |
ZHANG Lin, SHEN Li, DING Liang, et al. Fine-Tuning Global Model Via Data-Free Knowledge Distillation for Non-IID Federated Learning[C]// IEEE. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2022: 10164-10173.
|
[14] |
ZHANG Jie, CHEN Chen, LI Bo, et al. Dense: Data-Free One-Shot Federated Learning[J]. Advances in Neural Information Processing Systems, 2022, 35: 21414-21428.
|
[15] |
LUO Kangyang, WANG Shuai, FU Yexuan, et al. DFRD: Data-Free Robustness Distillation for Heterogeneous Federated Learning[C]// NeurIPS. 37th International Conference on Neural Information Processing Systems. New York: Curran Associates, 2023: 17854-17866.
|
[16] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
|
[17] |
JIANG Jinyang, WU Haotian, WANG Fengjuan, et al. Cross-Dimensional Reconstruction of Microstructures and Transport Properties Characterization of Porous Materials via Deep Convolutional Generative Adversarial Network[J]. Engineering Mechanics, 2024, 41: 1-14.
|
[18] |
ODENA A, OLAH C, SHLENS J. Conditional Image Synthesis with Auxiliary Classifier Gans[C]// ICML. 34th International Conference on Machine Learning. New York: PMLR, 2017: 2642-2651.
|
[19] |
KANG M, SHIM W, CHO M, et al. Rebooting Acgan: Auxiliary Classifier Gans with Stable Training[J]. Advances in Neural Information Processing Systems, 2021, 34: 23505-23518.
|
[20] |
DO K, LE T H, NGUYEN D, et al. Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation[J]. Advances in Neural Information Processing Systems, 2022, 35: 10055-10067.
|