[1] |
CHEN Lei, YUAN Yuan. Image Recognition of Agricultural Diseases Based on Deep Transfer Learning[J]. Frontiers of Data & Computing, 2020,2(2):111-119.
|
|
陈雷, 袁媛. 基于深度迁移学习的农业病害图像识别[J]. 数据与计算发展前沿, 2020,2(2):111-119.
|
[2] |
RAFFIE Z. A Mohd, MEGAT F. Zuhairi, AKIMI Z. A Shadil, et al. Anomaly-based NIDS: A Review of Machine Learning Methods on Malware Detection[C]// IEEE. 2017 International Conference on Information and Communication Technology Convergence,October 18-20, 2017, Jeju Island, Korea. New York: IEEE, 2017: 266-270.
|
[3] |
LEVENT Koc, THOMAS A, Mazzuchi. A Network Intrusion Detection System Based on a Hidden Naive Bayes Multiclass Classifier[J]. Expert Systems with Application, 2012,39(18):13492-13500.
doi: 10.1016/j.eswa.2012.07.009
URL
|
[4] |
AN Wenjuan, LIANG Mangui. A New Intrusion Detection Method based on SVM with Minimum Within-class Scatter[J]. Security and Communication Networks, 2013,6(9):1-11.
doi: 10.1002/sec.v6.1
URL
|
[5] |
SIVA S, SIVATHA Sindhu, S. Geetha, et al. Decision Tree Based Light Weight Intrusion Detection Using a Wrapper Approach[J]. Expert Systems with Applications, 2012,39(1):129-141.
doi: 10.1016/j.eswa.2011.06.013
URL
|
[6] |
ARUNA Jamdagni, TAN Zhiyuan, HE Xiangjian, et al. RePIDS: A Multi Tier Real-time Payload-based Intrusion Detection System[J]. Computer Networks, 2013,57(3):811-824.
doi: 10.1016/j.comnet.2012.10.002
URL
|
[7] |
HINTON G, SALAKHUTDINOV R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006,313(5786):504-507.
doi: 10.1126/science.1127647
URL
pmid: 16873662
|
[8] |
MATIN W, NASIM Z, AHMED N, et al. Artificial Neural Network based System for Intrusion Detection using Clustering on Different Feature Selection[J]. International Journal of Computer Applications, 2015,126(12):21-28.
|
[9] |
LIN Steven Z, SHI Yong, XUE Zhi. Character-level Intrusion Detection based on Convolutional Neural Networks[C]// IEEE. 2018 International Joint Conference on Neural Networks (IJCNN), July 8-13, 2018, Rio de Janeiro, Brazil. New York: IEEE, 2018: 1-8.
|
[10] |
LISEHROODI, MAZYAR Mohammadi, MUDA, et al. A Hybrid Framework based on Neural Network MLP and Means Clustering for Intrusion Detection System[C]// IEEE. 4th International Conference on Computing and Informatics(ICOCI), August 28-30, 2013,Sarawak, Malaysia. NewYork: IEEE, 2013: 305-311.
|
[11] |
YU Yizhou, MA Jiechao, SHI Dejun, et al. Application of Deep Learning in Medical Imaging Analysis: A Survey[J]. Frontiers of Data & Computing, 2019,1(2):37-52.
|
|
俞益洲, 马杰超, 石德君, 等. 深度学习在医学影像分析中的应用综述[J]. 数据与计算发展前沿, 2019,1(2):37-52.
|
[12] |
CHEN L S, SYU J S. Feature Extraction based Approaches for Improving the Performance of Intrusion Detection Systems[C]// International Association of Engineers. The International Multiconference of Engineers and Computer Scientists, March 18-20, 2015, Hong Kong,China. United Kingdom: IET INSPEC, 2015: 1-6.
|
[13] |
FAN Jianqing, FENG Yan, JIANG Jianchen, et al. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification[J]. Journal of the American Statistical Association, 2016,111(513):275-287.
doi: 10.1080/01621459.2015.1005212
URL
pmid: 27185970
|
[14] |
REVATHI S, MALATHI A. A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detection[J]. International Journal of Engineering Research & Technology, 2013,2(13):1848-1853.
|