| [1] |
KUANG Boyu, FU Anmin, GAO Yansong, et al. FeSA: Automatic Federated Swarm Attestation on Dynamic Large-Scale IoT Devices[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(4): 2954-2969.
|
| [2] |
ARTENSTEIN N. Broadpwn: Remotely Compromising Android and iOS via a Bug in Broadcom’s Wi-Fi Chipsets[EB/OL]. (2017-07-27) [2024-05-29]. https://blog.exodusintel.com/2017/07/26/broadpwn/.
|
| [3] |
MARGOLIS J, OH T T, JADHAV S, et al. An In-Depth Analysis of the Mirai Botnet[C]// IEEE. 2017 International Conference on Software Security and Assurance (ICSSA). New York: IEEE, 2017: 6-12.
|
| [4] |
ZHANG Hao, SHEN Shandian, LIU Peng, et al. Review of Firmware Emulators in Embedded Devices[J]. Journal of Computer Research and Development, 2023, 60(10): 2255-2270.
|
|
张浩, 申珊靛, 刘鹏, 等. 嵌入式设备固件仿真器综述[J]. 计算机研究与发展, 2023, 60(10): 2255-2270.
|
| [5] |
FENG Xiaotao, ZHU Xiaogang, HAN Qinglong, et al. Detecting Vulnerability on IoT Device Firmware: A Survey[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 10(1): 25-41.
|
| [6] |
YU Yingchao, CHEN Zuoning, GAN Shuitao, et al. Research on the Technologies of Security Analysis Technologies on the Embedded Device Firmware[J]. Chinese Journal of Computers, 2021, 44(5): 859-881.
|
|
于颖超, 陈左宁, 甘水滔, 等. 嵌入式设备固件安全分析技术研究[J]. 计算机学报, 2021, 44(5): 859-881.
|
| [7] |
TANASACHE F D, SORELLA M, BONOMI S, et al. Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems[EB/OL]. (2018-10-23) [2024-05-29]. https://doi.org/10.48550/arXiv.1810.09752.
|
| [8] |
WRIGHT C, MOEGLEIN W A, BAGCHI S, et al. Challenges in Firmware Re-Hosting, Emulation, and Analysis[J]. ACM Computing Surveys (CSUR), 2022, 54(1): 1-36.
|
| [9] |
SCHWARTZ E J, AVGERINOS T, BRUMLEY D. All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (But Might Have Been Afraid to Ask)[C]// IEEE. 2010 IEEE Symposium on Security and Privacy. New York: IEEE, 2010: 317-331.
|
| [10] |
FASANO A, BALLO T, MUENCH M, et al. SoK: Enabling Security Analyses of Embedded Systems via Rehosting[C]// ACM. The 2021 ACM Asia Conference on Computer and Communications Security. New York: ACM, 2021: 687-701.
|
| [11] |
ZADDACH J, BRUNO L, FRANCILLON A, et al. Avatar: A Framework to Support Dynamic Security Analysis of Embedded Systems’ Firmwares[C]// IEEE. 2014 Network and Distributed System Security Symposium. New York: IEEE, 2014: 1-16.
|
| [12] |
KAMMERSTETTER M, PLATZER C, KASTNER W. Prospect: Peripheral Proxying Supported Embedded Code Testing[C]// ACM. The 9th ACM Symposium on Information, Computer and Communications Security. New York: ACM, 2014: 329-340.
|
| [13] |
BELLARD F. QEMU, a Fast and Portable Dynamic Translator[C]// USENIX. The Annual Conference on USENIX Annual Technical Conference. Berkley: USENIX, 2005: 41-46.
|
| [14] |
CHEN D D, EGELE M, WOO M, et al. Towards Automated Dynamic Analysis for Linux-Based Embedded Firmware[C]// IEEE. 2016 Network and Distributed System Security Symposium. New York: IEEE, 2016: 1-16.
|
| [15] |
KIM M, KIM D, KIM E, et al. FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis[C]// ACM. Annual Computer Security Applications Conference. New York: ACM, 2020: 733-745.
|
| [16] |
GUSTAFSON E, MUENCH M, SPENSKY C, et al. Toward the Analysis of Embedded Firmware through Automated Re-Hosting[C]// USENIX. 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019). Berkley: USENIX, 2019: 135-150.
|
| [17] |
FENG Bo, MERA A, LU Long. {P2IM}: Scalable and Hardware-Independent Firmware Testing via Automatic Peripheral Interface Modeling[C]// USENIX. 29th USENIX Security Symposium. Berkley: USENIX, 2020: 1237-1254.
|
| [18] |
CLEMENTS A A, GUSTAFSON E, SCHARNOWSKI T, et al. {HALucinator}: Firmware Re-Hosting through Abstraction Layer Emulation[C]// USENIX. 29th USENIX Security Symposium. Berkley: USENIX, 2020: 1201-1218.
|
| [19] |
LI Wenqiang, GUAN Le, LIN Jingqiang, et al. From Library Portability to Para-Rehosting: Natively Executing Microcontroller Software on Commodity Hardware[EB/OL]. (2021-07-04) [2024-05-29]. https://arxiv.org/abs/2107.12867.
|
| [20] |
ZHOU Wei, ZHANG Lan, GUAN Le, et al. What Your Firmware Tells You is Not How You Should Emulate It: A Specification-Guided Approach for Firmware Emulation[C]// ACM. The 2022 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2022: 3269-3283.
|
| [21] |
CAO Chen, GUAN Le, MING Jiang, et al. Device-Agnostic Firmware Execution is Possible: A Concolic Execution Approach for Peripheral Emulation[C]// ACM. Annual Computer Security Applications Conference. New York: ACM, 2020: 746-759.
|
| [22] |
ZHOU Wei, GUAN Le, LIU Peng, et al. Automatic Firmware Emulation through Invalidity-Guided Knowledge Inference[C]// USENIX. 30th USENIX Security Symposium. Berkley: USENIX, 2021: 2007-2024.
|
| [23] |
SHOSHITAISHVILI Y, WANG Ruoyu, SALLS C, et al. SOK: (State of ) The Art of War: Offensive Techniques in Binary Analysis[C]// IEEE. 2016 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2016: 138-157.
|
| [24] |
SCHARNOWSKI T, BARS N, SCHLOEGEL M, et al. Fuzzware: Using Precise {MMIO} Modeling for Effective Firmware Fuzzing[C]// USENIX. 31st USENIX Security Symposium. Berkley: USENIX, 2022: 1239-1256.
|