Netinfo Security ›› 2025, Vol. 25 ›› Issue (3): 467-477.doi: 10.3969/j.issn.1671-1122.2025.03.009
Previous Articles Next Articles
Received:
2024-12-19
Online:
2025-03-10
Published:
2025-03-26
Contact:
LI Lisha
E-mail:Li_sha_Li@163.com
CLC Number:
QIN Guangxue, LI Lisha. ARX Block Cipher Distinguisher Based on Quantum Convolutional Neural Network[J]. Netinfo Security, 2025, 25(3): 467-477.
方法 | 量子比特数 /个 | 编码方法 | 参数 数量 /个 | 数据大小/个 (训练,测试) | 周期数 /次 | 批大小 /个 | 训练 准确率 | 测试 准确率 |
---|---|---|---|---|---|---|---|---|
文献[ | 16 | 基态编码 | 385 | 213.8727, 29.9660 | 10 | 32 | 52% | 53% |
本文 | 8 | IQP编码变体 | 213 | 213.8727, 29.9660 | 10 | 32 | 75.9% | 76.8% |
Constrained C | — | — | 4353 | 同本文 | 同本文 | 同本文 | 79% | 76% |
文献[ (C1) | — | — | 100897 | 223.2534, 219.9316 | 200 | 5000 | 93% | 93% |
文献[ (C2) | — | — | 自适应调整 | 223.2534, 219.9316 | 10 | 500 | 99% (最大) | 99% (最大) |
算法 | 轮数 /轮 | 模式 | 学习率 | 训练数据量/个 | 周期数/次 | 批大小/个 | 测试准确率 |
---|---|---|---|---|---|---|---|
SPECK-32 | 5 | Q | 0.1% | 213.8727 | 10 | 32 | 76.8% |
5 | C | — | 223.2534 | 10 | 500 | 99%(最大)[ | |
SPECK-32 | 6 | Q | 1% | 213.8727 | 10 | 64 | 58.5% |
6 | C | — | 223.2534 | 10 | 500 | 98%(最大)[ | |
Speckey | 5 | Q | 0.1% | 213.8727 | 10 | 32 | 77.2% |
5 | C | — | 223.2534 | 100 | 5000 | 97.4%(最佳)[ | |
Speckey | 6 | Q | 1% | 213.8727 | 10 | 64 | 59.8% |
6 | C | — | 223.2534 | 100 | 5000 | 87.8%(最佳)[ | |
LAX32 | 3 | Q | 1% | 213.8727 | 10 | 64 | 58.3% |
3 | C | — | 223.2534 | 100 | 5000 | 90.2%(最佳)[ |
[1] | BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum Machine Learning[J]. Nature, 2017, 549(7671): 195-202. |
[2] | RUAN Yue, CHEN Hanwu, LIU Zhihao, et al. Quantum Principal Component Analysis Algorithm[J]. Chinese Journal of Computers, 2014, 37(3): 666-676. |
[3] | LI Zhaokai, LIU Xiaomei, XU Nanyang, et al. Experimental Realization of a Quantum Support Vector Machine[EB/OL]. (2015-04-08)[2024-11-19]. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.140504. |
[4] | DANG Yijie, JIANG Nan, HU Hao, et al. Image Classification Based on Quantum K-Nearest-Neighbor Algorithm[J]. Quantum Information Processing, 2018, 17: 1-18. |
[5] | DWIVEDI K, NIGAM A. Quantum Deep Learning for Phoniatrics Biomarker Based Disease Detection Deep Learning Model for Disease Detection by Phoniatrics Biomarkers Using Quantum Computation[C]// IEEE. 2nd International Conference on Data, Engineering and Applications (IDEA). New York: IEEE, 2020: 1-8. |
[6] | DONG Yumin, FU Yanying, LIU Hengrui, et al. An Improved Hybrid Quantum-Classical Convolutional Neural Network for Multi-Class Brain Tumor MRI Classification[EB/OL]. (2023-02-14)[2024-11-19]. https://pubs.aip.org/aip/jap/article-abstract/133/6/064401/2872018. |
[7] | ZOUFAL C, LUCCHI A, WOERNER S. Variational Quantum Boltzmann Machines[J]. Quantum Machine Intelligence, 2021, 3: 1-15. |
[8] | STAMATOPOULOS N, EGGER D J, SUN Yue, et al. Option Pricing Using Quantum Computers[EB/OL]. (2020-07-02)[2024-11-19]. https://arxiv.org/abs/1905.02666v5. |
[9] | WANG Jian, ZHANG Rui, JIANG Nan. Survey on Quantum Machine Learning[J]. Journal of Software, 2024, 35(8): 3843-3877. |
王健, 张蕊, 姜楠. 量子机器学习综述[J]. 软件学报, 2024, 35(8): 3843-3877. | |
[10] | WIEBE N, KAPOOR A, SVORE K M. Quantum Deep Learning[EB/OL]. (2014-12-10)[2024-11-19]. https://arxiv.org/abs/1412.3489. |
[11] | LLOYD S, WEEDBROOK C. Quantum Generative Adversarial Learning[EB/OL]. (2018-07-26)[2024-11-19]. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.040502. |
[12] | CHEN S Y C, YANG C H H, QI Jun, et al. Variational Quantum Circuits for Deep Reinforcement Learning[J]. IEEE Access, 2020, 8: 141007-141024. |
[13] |
CONG I, CHOI S, LUKIN M D. Quantum Convolutional Neural Networks[J]. Nature Physics, 2019, 15(12): 1273-1278.
doi: 10.1038/s41567-019-0648-8 |
[14] | KAK S C. Quantum Neural Computing[J]. Advances in Imaging and Electron Physics. 1995, 94: 259-313. |
[15] |
ABBAS A, SUTTER D, ZOUFAL C, et al. The Power of Quantum Neural Networks[J]. Nature Computational Science, 2021, 1(6): 403-409.
doi: 10.1038/s43588-021-00084-1 pmid: 38217237 |
[16] | KIM H, JANG K, LIM S, et al. Quantum Neural Network Based Distinguisher on SPECK-32/64[EB/OL]. (2023-06-18)[2024-11-19]. https://www.mdpi.com/1424-8220/23/12/5683. |
[17] | HUR T, KIM L, PARK D K. Quantum Convolutional Neural Network for Classical Data Classification[EB/OL]. (2022-02-11)[2024-11-19]. https://arxiv.org/abs/2108.00661. |
[18] | GOHR A. Improving Attacks on Round-Reduced SPECK32/64 Using Deep Learning[EB/OL]. (2019-08-15)[2024-11-19]. https://ia.cr/2019/037. |
[19] | CHEN Yi, YU Hongbo. A New Neural Distinguisher Model Considering Derived Features from Multiple Ciphertext Pairs[EB/OL]. (2021-03-09)[2024-11-19]. https://ia.cr/2021/310. |
[20] | BENAMIRA A, GERAULT D, PEYRIN T, et al. A Deeper Look at Machine Learning-Based Cryptanalysis[EB/OL]. (2021-03-22)[2024-12-19]. https://ia.cr/2021/287. |
[21] | BAKSI A, BREIER J, CHEN Yi, et al. Machine Learning Assisted Differential Distinguishers for Lightweight Ciphers (Extended Version)[EB/OL]. (2020-12-02)[2024-11-19]. https://ia.cr/2020/571. |
[22] | HOU Zezhou, REN Jiongjiong, CHEN Shaozhen. Cryptanalysis of Round-Reduced SIMON32 Based on Deep Learning[EB/OL]. (2021-03-18)[2024-11-19]. https://ia.cr/2021/362. |
[23] | YADAV T, KUMAR M. Differential-ML Distinguisher: Machine Learning Based Generic Extension for Differential Cryptanalysis[EB/OL]. (2020-10-29)[2024-11-19]. https://ia.cr/2020/913. |
[24] | LU Jinyu, LIU Guoqiang, SUN Bing, et al. Improved (Related-Key) Differential-Based Neural Distinguishers for SIMON and Simeck Block Ciphers[J]. The Computer Journal, 2024, 67(2): 537-547. |
[25] | RAJAN R, ROY R K, SEN D, et al. Deep Learning-Based Differential Distinguisher for Lightweight Cipher GIFT-COFB[C]// IPSCTM. Proceedings of MISS 2021. Heidelberg: Springer, 2022: 397-406. |
[26] | YANG Xiaoxue, CHEN Jie, HAN Lidong. Application of Deep Learning in Differential Cryptanalysis of ARX Block Ciphers[J]. Journal of Cryptologic Research, 2022, 9(5): 923-935. |
杨小雪, 陈杰, 韩立东. 深度学习在 ARX 分组密码差分分析的应用[J]. 密码学报, 2022, 9(5): 923-935. | |
[27] | HAVLÍČEK V, CÓRCOLES A D, TEMME K, et al. Supervised Learning with Quantum-Enhanced Feature Spaces[J]. Nature, 2019, 567(7747): 209-212. |
[28] | BIRYUKOV A, VELICHKOV V, LE C Y. Automatic Search for the Best Trails in ARX: Application to Block Cipher Speck[EB/OL]. (2016-04-25)[2024-11-19]. https://ia.cr/2016/409. |
[29] | DINU D, PERRIN L, UDOVENKO A, et al. Design Strategies for ARX with Provable Bounds: Sparx and LAX (Full Version)[EB/OL]. (2021-05-31)[2024-11-19]. https://ia.cr/2016/984. |
[30] | BEAULIEU R, SHORS D, SMITH J, et al. The SIMON and SPECK Lightweight Block Ciphers[C]// IEEE. 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). New York: IEEE, 2015: 1-6. |
[31] | YANG Gangqiang, ZHU Bo, SUDER V, et al. The Simeck Family of Lightweight Block Ciphers[EB/OL]. (2015-06-30)[2024-11-19]. https://ia.cr/2015/612. |
[1] | ZHANG Xinglan, LI Dengxiang. MD5 Collision Attack Model Based on Grover’s Quantum Search Algorithm [J]. Netinfo Security, 2024, 24(8): 1210-1219. |
[2] | SHEN Xiamin, XIONG Tao, LI Hua, SHEN Xuan. Research on the Construction of Zero-Correlation Linear Discriminator for CLEFIA Dynamic Cipher Structure [J]. Netinfo Security, 2024, 24(6): 948-958. |
[3] | CUI Ting, ZHOU Yidong, CHEN Shiwei, ZHANG Yi. The Spectral Invariant Subspace of Word-Based Block Ciphers [J]. Netinfo Security, 2024, 24(12): 1845-1854. |
[4] | ZHANG Xinglan, GUO Yankun, CHEN Fei, ZHANG Feng. Key Recovery Attacks on Block Cipher EM-Like Structures Based on Quantum Simon’s Algorithm [J]. Netinfo Security, 2024, 24(1): 106-112. |
[5] | ZHANG Xinglan, ZHANG Feng. Quantum Solving Euler’s Totient Function to Crack RSA [J]. Netinfo Security, 2023, 23(7): 1-8. |
[6] | ZHANG Xiaolei, DAI Zibin, LIU Yanjiang, QU Tongzhou. Design of High Speed Reconfigurable Modulo Arithmetic Unit for Block Cipher [J]. Netinfo Security, 2023, 23(5): 76-84. |
[7] | HU Yujia, DAI Zhengyi, SUN Bing. Differential-Linear Cryptanalysis of the SIMON Algorithm [J]. Netinfo Security, 2022, 22(9): 63-75. |
[8] | TONG Xiaojun, SU Yuyue, ZHANG Miao, WANG Zhu. Lightweight Cipher Algorithm Based on Chaos and Improved Generalized Feistel Structure [J]. Netinfo Security, 2022, 22(8): 8-18. |
[9] | YANG Yunxiao, SHEN Xuan, SUN Bing. Impossible Differential Cryptanalysis of Mysterion [J]. Netinfo Security, 2021, 21(8): 43-51. |
[10] | WANG Jianxin, ZHOU Shiqiang, XIAO Chaoen, ZHANG Lei. High-speed Implementation of FESH Block Cipher Algorithm Based on FPGA [J]. Netinfo Security, 2021, 21(1): 57-64. |
[11] | DONG Xiaoli, SHANG Shuai, CHEN Jie. Impossible Differential Attacks on 9-Round Block Cipher Rijndael-192 [J]. Netinfo Security, 2020, 20(4): 40-46. |
[12] | WANG Yong. Study on New Mathematical Difficult Problem and Application in Block Cipher [J]. Netinfo Security, 2014, 14(11): 79-82. |
[13] | ZHANG Ping, CHEN Chang-song, HU Hong-gang. Authenticated Encryption Modes Based on Block Ciphers [J]. Netinfo Security, 2014, 14(11): 8-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||