[1] |
Symatec Corporation. Internet Security Threat Report[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=e4f762cca6e121c932226ec3b49ec9b6&site=xueshu_se, 2021-02-26.
|
[2] |
National Computer Network Emergency Technical Processing Coordination Center. China’s Internet Network Security Monitoring Data Analysis Report in the First Half of 2020[EB/OL]. http://www.cac.gov.cn/2020-09/26/c_1602682854845452.htm, 2020-09-30.
|
|
国家计算机网络应急技术处理协调中心. 2020 年上半年我国互联网网络安全监测数据分析报告[EB/OL]. http://www.cac.gov.cn/2020-09/26/c_1602682854845452.htm, 2020-09-30.
|
[3] |
DANIEL B. Opcodes as Predictor for Malware[J]. International Journal of Electronic Security and Digital Forensics, 2007, 1(2):156-168.
doi: 10.1504/IJESDF.2007.016865
URL
|
[4] |
YE Yanfang, LI Tao, CHEN Yong, et al. Automatic Malware Categorization Using Cluster Ensemble [C]//ACM. 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 25-28, 2010, Washington DC, USA. New York: ACM, 2010: 95-104.
|
[5] |
YUAN Zhenlong, LU Yongqiang, WANG Zhaoguo, et al. Droid-Sec: Deep Learning in Android Malware Detection[J]. ACM Sigcomm Computer Communication Review, 2014, 44(4):371-372.
doi: 10.1145/2740070.2631434
URL
|
[6] |
SUN Guosong, QIAN Quan. Deep Learning and Visualization for Identifying Malware Families[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 18(1):283-295.
doi: 10.1109/TDSC.8858
URL
|
[7] |
AGHAKHANI H, GRITTI F, MECCA F, et al. When Malware is Packin’Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features [C]//ISOC. 27th Network and Distributed System Security Symposium, February 23-26, 2020, San Diego, CA, USA. Reston: ISOC, 2020: 1-20.
|
[8] |
QIAO Yong, YANG Yuexiao, HE Jie, et al. CBM: Free, Automatic Malware Analysis Framework Using API Call Sequences[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=2f9a98813da9302381169505621a5a1d, 2021-02-28.
|
[9] |
ANDERSON B, QUIST D, NEIL J, et al. Graph-based Malware Detection Using Dynamic Analysis[J]. Journal in Computer Virology, 2011, 7(4):247-258.
doi: 10.1007/s11416-011-0152-x
URL
|
[10] |
FUJINO A, MURAKMI J, MORI T. Discovering Similar Malware Samples Using API Call Topics [C]//IEEE. 12th Annual IEEE Consumer Communications and Networking Conference, January 9-12, 2015, Las Vegas, NV, USA. Piscataway: IEEE, 2015: 140-147.
|
[11] |
AMER E, ZELINKA I. A Dynamic Windows Malware Detection and Prediction Method Based on Contextual Understanding of API Call Sequence[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=184b0mv0v2710c503t410e10nv535705&site=xueshu_se, 2020-12-28.
|
[12] |
ZHANG Jixin, ZHENG Qin, HUI Yin, et al. IRMD: Malware Variant Detection Using Opcode Image Recognition [C]// IEEE. International Conference on Parallel & Distributed Systems, December 13-16, 2016, Wuhan, China.Piscataway: IEEE, 2017: 1175-1180.
|
[13] |
KIM T, KANG B, KWON H. Malware Classification Method via Binary Content Comparison [C]// ACM. 2012 ACM Research in Applied Computation Symposium, October 23-26, 2012, San Antonio, USA. New York: ACM, 2012: 316-321.
|
[14] |
SANTONS I, DEVESA J, BREZO F, et al. OPEM: A Static-dynamic Approach for Machine- learning-based Malware Detection[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=73e0e66daef64a6f5d40ec7348d14e34&site=xueshu_se&sc_from=nju, 2021-02-26.
|
[15] |
NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware Images: Visualization and Automatic Classification [C]// ACM. 8th International Symposium on Visualization for Cyber Security, Pittsburgh Pennsylvania, USA, July 20, 2011. New York: ACM, 2011: 1-7.
|