信息网络安全 ›› 2025, Vol. 25 ›› Issue (12): 1914-1926.doi: 10.3969/j.issn.1671-1122.2025.12.007

• 理论研究 • 上一篇    下一篇

基于图变分自编码器的多模态特征融合加密流量分类模型

韩益亮(), 彭一轩, 吴旭光, 李鱼   

  1. 中国人民武装警察部队工程大学密码工程学院,西安 710086
  • 收稿日期:2025-05-12 出版日期:2025-12-10 发布日期:2026-01-06
  • 通讯作者: 韩益亮 E-mail:hanyil@163.com
  • 作者简介:韩益亮(1977—),男,甘肃,教授,博士,主要研究方向为公钥密码学、深度学习和隐私保护|彭一轩(2001—),男,山西,硕士研究生,主要研究方向为加密流量分析|吴旭光(1986—),男,河南,副教授,博士,主要研究方向为密码学和信息安全|李鱼(1995—),男,重庆,讲师,博士,主要研究方向为密码学
  • 基金资助:
    陕西省自然科学基金(2025JC-YBMS-664)

Multimodal Feature Fusion Encrypted Traffic Classification Model Based on Graph Variational Auto-Encoder

HAN Yiliang(), PENG Yixuan, WU Xuguang, LI Yu   

  1. College of Cryptographic Engineering, Engineering University of PAP, Xi’an 710086, China
  • Received:2025-05-12 Online:2025-12-10 Published:2026-01-06
  • Contact: HAN Yiliang E-mail:hanyil@163.com

摘要:

随着流量加密技术的广泛应用与不断演进,如何提升加密流量分类的精度,成为保障网络安全与高效管理的关键技术挑战。现有的加密流量分类方法采用相同的机制提取包头和负载特征,无法充分利用包头和负载中具有不同特性的有效信息,且忽视了密文的随机特征,导致分类精度遇到性能瓶颈。文章提出一种基于图变分自编码器的多模态特征融合加密流量分类模型(MFF-VGAE),该模型运用多模态特征融合技术分别提取并融合包头和负载中的有效信息。此外,该模型使用图变分自编码器,将样本特征映射到服从正态分布的随机空间,在学习密文数据概率分布的同时生成增强样本。通过训练,该模型在提升分类精度与鲁棒性的同时,降低了计算量。实验结果表明,文章所提出的模型在ISCX VPN-nonVPN和ISCX Tor-nonTor数据集上,相较于当前主流基线模型表现更优,且模型计算量相较于使用类似结构的TFE-GNN下降了9.1%。

关键词: 加密流量分类, 图神经网络, 图变分自编码器

Abstract:

With the widespread application and continuous evolution of traffic encryption technology, improving the accuracy of encrypted traffic classification has become a critical technical challenge for ensuring network security and efficient management. Existing encrypted traffic classification methods use the same mechanism to extract header and payload features, failing to fully utilize the effective information with different characteristics in the header and payload, while ignoring the random features of ciphertext, leading to performance bottlenecks in classification accuracy. This paper proposed a multi-modal feature fusion encrypted traffic classification model (MFF-VGAE) based on graph variational auto-encoder. The model employed multi-modal feature fusion technology to extract and fuse effective information from the header and payload separately. Additionally, the model used a graph variational auto-encoder to map sample features into a random space following a normal distribution, generating augmented samples while learning the probability distribution of ciphertext data. Through training, the model improves classification accuracy and robustness while reducing computational complexity. Experimental results show that the proposed model outperforms current mainstream baseline models on the ISCX VPN-nonVPN and ISCX Tor-nonTor datasets, with a 9.1% reduction in computational complexity compared to the TFE-GNN model with a similar structure.

Key words: traffic classification, graph neural networks, variational graph auto-encoder

中图分类号: