信息网络安全 ›› 2024, Vol. 24 ›› Issue (3): 462-472.doi: 10.3969/j.issn.1671-1122.2024.03.011
收稿日期:
2023-07-12
出版日期:
2024-03-10
发布日期:
2024-04-03
通讯作者:
何俊江
E-mail:hejunjiang@scu.edu.cn
作者简介:
张强(1999—),男,河南,硕士研究生,主要研究方向为网络流量分类、深度学习、数据挖掘|何俊江(1993—),男,四川,助理研究员,博士,主要研究方向为网络流量分析识别、信息安全、数据挖掘|李汶珊(1995—),女,四川,讲师,博士研究生,主要研究方向为数据科学、机器学习、生物信息学|李涛(1965—),男,四川,教授,博士,主要研究方向为人工免疫、网络安全、信息安全、数据安全
基金资助:
ZHANG Qiang1, HE Junjiang1(), LI Wenshan1,2, LI Tao1
Received:
2023-07-12
Online:
2024-03-10
Published:
2024-04-03
Contact:
HE Junjiang
E-mail:hejunjiang@scu.edu.cn
摘要:
网络异常流量识别是目前网络安全的重要任务之一。然而传统流量分类模型是依据流量数据训练得到,由于大部分流量数据分布不均导致分类边界模糊,极大限制了模型的分类性能。为解决上述问题,文章提出一种基于深度度量学习的异常流量检测方法。首先,与传统深度度量学习每个类别单一代理的算法不同,文章设计双代理机制,通过目标代理指引更新代理的优化方向,提升模型的训练效率,增强同类别流量数据的聚集能力和不同类别流量数据的分离能力,实现最小化类内距离和最大化类间距离,使数据的分类边界更清晰;然后,搭建基于1D-CNN和Bi-LSTM的神经网络,分别从空间和时间的角度高效提取流量特征。实验结果表明,NSL-KDD流量数据经过模型处理,其类内距离显著减小并且类间距离显著增大,类内距离相比原始类内距离减小了73.5%,类间距离相比原始类间距离增加了52.7%,且将文章搭建的神经网络比广泛使用的深度残差网络训练时间更短、效果更好。将文章所提模型应用在流量分类任务中,在NSL-KDD和CICIDS2017数据集上,相比传统的流量分类算法,其分类效果更好。
中图分类号:
张强, 何俊江, 李汶珊, 李涛. 基于深度度量学习的异常流量检测方法[J]. 信息网络安全, 2024, 24(3): 462-472.
ZHANG Qiang, HE Junjiang, LI Wenshan, LI Tao. Anomaly Traffic Detection Based on Deep Metric Learning[J]. Netinfo Security, 2024, 24(3): 462-472.
表6
NSL-KDD数据集分类器效果对比
分类器 | Weighted-Precision | Weighted-Recall | Weighted-F1 | |||
---|---|---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | 处理前 | 处理后 | |
KNN | 79.0% | 82.6% | 75.8% | 78.1% | 71.1% | 74.9% |
SVM | 81.7% | 82.7% | 77.4% | 78.1% | 74.7% | 75.1% |
DT | 73.2% | 80.0% | 69.6% | 77.7% | 65.4% | 74.4% |
RF | 72.0% | 82.4% | 57.1% | 78.0% | 52.0% | 74.7% |
XGBoost | 78.0% | 82.7% | 71.5% | 78.1% | 70.2% | 75.0% |
文献[ | 79.2% | 81.7% | 74.1% | 78.2% | 71.1% | 75.1% |
文献[ | 81.2% | 82.7% | 75.7% | 78.1% | 72.0% | 75.2% |
表7
CICIDS2017数据集分类器效果对比
分类器 | Weighted-Precision | Weighted-Recall | Weighted-F1 | |||
---|---|---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | 处理前 | 处理后 | |
KNN | 97.0% | 98.0% | 97.1% | 98.1% | 97.0% | 98.1% |
SVM | 66.6% | 96.4% | 62.9% | 96.2% | 60.4% | 96.0% |
DT | 95.4% | 96.2% | 94.7% | 95.8% | 94.1% | 95.7% |
RF | 97.0% | 97.3% | 97.4% | 97.6% | 97.2% | 97.4% |
XGBoost | 97.8% | 97.9% | 97.9% | 98.0% | 97.7% | 97.8% |
文献[ | 97.3% | 99.1% | 97.4% | 99.0% | 97.2% | 98.8% |
文献[ | 91.7% | 96.9% | 90.3% | 96.7% | 88.7% | 96.4% |
[1] |
YANG Zheng, LIU Xiaodong, LI Tong, et al. A Systematic Literature Review of Methods and Datasets for Anomaly-Based Network Intrusion Detection[J]. Computers & Security, 2022, 116: 102675-102684.
doi: 10.1016/j.cose.2022.102675 URL |
[2] | ROSHAN K, ZAFAR A. Deep Learning Approaches for Anomaly and Intrusion Detection in Computer Network: A Review[J]. Cyber Security and Cyber Security and Digital Forensics, 2022, 73: 551-563. |
[3] | AZAB A, KHASAWNEH M, ALRABAEE S, et al. Network Traffic Classification: Techniques, Datasets, and Challenges[EB/OL]. (2022-09-18) [2023-06-20]. https://doi.org/10.1016/j.dcan.2022.09.009. |
[4] | SEN S, SPATSCHECK O, WANG Dongmei. Accurate, Scalable in-Network Identification of P2P Traffic Using Application Signatures[C]// ACM. Proceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004: 512-521. |
[5] | MOORE A W, PAPAGIANNAKI K. Toward the Accurate Identification of Network Applications[C]// Springer. 6th International Workshop on Passive and Active Network Measurement. Heidelberg: Springer, 2005: 41-54. |
[6] |
PARVAT T J, CHANDRA P. A Novel Approach to Deep Packet Inspection for Intrusion Detection[J]. Procedia Computer Science, 2015, 45: 506-513.
doi: 10.1016/j.procs.2015.03.091 URL |
[7] |
ZHANG Chunying, JIA Donghao, WANG Liya, et al. Comparative Research on Network Intrusion Detection Methods Based on Machine Learning[J]. Computers & Security, 2022, 121: 102861-102873.
doi: 10.1016/j.cose.2022.102861 URL |
[8] | HEARST M A, DUMAIS S T, OSUNA E, et al. Support Vector Machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28. |
[9] |
SONG Yanyan, YING Lu. Decision Tree Methods: Applications for Classification and Prediction[J]. Shanghai Archives of Psychiatry, 2015, 27(2): 130-135.
doi: 10.11919/j.issn.1002-0829.215044 pmid: 26120265 |
[10] | LAAKSONEN J, OJA E. Classification with Learning K-Nearest Neighbors[C]// IEEE. Proceedings of International Conference on Neural Networks (ICNN’96). New York: IEEE, 1996, 3: 1480-1483. |
[11] |
BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45: 5-32.
doi: 10.1023/A:1010933404324 URL |
[12] | CHEN T, GUESTRIN C. XGBoost: A Scalable Tree Boosting System[C]// ACM. Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. |
[13] | WANG Wei, ZHU Ming, WANG Jinlin, et al. End-to-End Encrypted Traffic Classification with One-Dimensional Convolution Neural Networks[C]// IEEE. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). New York: IEEE, 2017: 43-48. |
[14] |
YAO Haipeng, LIU Chong, ZHANG Peiying, et al. Identification of Encrypted Traffic through Attention Mechanism Based Long Short Term Memory[J]. IEEE Transactions on Big Data, 2019, 8(1): 241-252.
doi: 10.1109/TBDATA.2019.2940675 URL |
[15] | ZHANG Wenming. Abnormal Network Traffic Detection Based on Deep Metric Learning[D]. Xi’an: Xidian University, 2021. |
张文铭. 基于深度度量学习的异常网络流量检测[D]. 西安: 西安电子科技大学, 2021. | |
[16] | XUE Jingliang. Research on Network Traffic Identificaiton Technology Based on Deep Metric Learning[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2021. |
薛靖靓. 基于深度度量学习的网络流量识别技术研究[D]. 郑州: 战略支援部队信息工程大学, 2021. | |
[17] | CHOPRA S, HADSELL R, LECUN Y. Learning a Similarity Metric Discriminatively, with Application to Face Verification[C]// IEEE. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). New York: IEEE, 2005: 539-546. |
[18] | SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: A Unified Embedding for Face Recognition and Clustering[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 815-823. |
[19] | SONG O H, XIANG Yu, JEGELKA S, et al. Deep Metric LEARNING via Lifted Structured Feature Embedding[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 4004-4012. |
[20] | CHEN Weihua, CHEN Xiaotang, ZHANG Jianguo, et al. Beyond Triplet Loss: A Deep Quadruplet Network for Person Re-Identification[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 403-412. |
[21] | SOHN K. Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective[J]. Advances in Neural Information Processing Systems, 2016, 8: 29-37. |
[22] | MOVSHOVITZ-ATTIAS Y, TOSHEV A, LEUNG T K, et al. No Fuss Distance Metric Learning Using Proxies[C]// IEEE. Proceedings of the IEEE International Conference on Computer Vision. New York: IEEE, 2017: 360-368. |
[23] | KIM S, KIM D, CHO M, et al. Proxy Anchor Loss for Deep Metric Learning[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 3238-3247. |
[24] | WANG Yifan, LIU Pingping, LANG Yijun, et al. Learnable Dynamic Margin in Deep Metric Learning[J]. Pattern Recognition, 2022, 132: 128-140. |
[25] | LOKOČ J, KOHOUT J, ČECH P, et al. K-NN Classification of Malware in HTTPS Traffic Using the Metric Space Approach[C]// Springer. Intelligence and Security Informatics:11th Pacific Asia Workshop. Heidelberg: Springer, 2016: 131-145. |
[26] |
DI M M, DI S C. Improving SIEM Capabilities through an Enhanced Probe for Encrypted Skype Traffic Detection[J]. Journal of Information Security and Applications, 2018, 38: 85-95.
doi: 10.1016/j.jisa.2017.12.001 URL |
[27] |
LOTFOLLAHI M, JAFARI S M, SHIRALI H Z R, et al. Deep Packet: A Novel Approach for Encrypted Traffic Classification Using Deep Learning[J]. Soft Computing, 2020, 24(3): 1999-2012.
doi: 10.1007/s00500-019-04030-2 |
[28] |
ZENG Yi, GU Huaxi, WEI Wenting, et al. Deep-Full-Range: A Deep Learning Based Network Encrypted Traffic Classification and Intrusion Detection Framework[J]. IEEE Access, 2019, 7: 45182-45190.
doi: 10.1109/Access.6287639 URL |
[29] | LIU Chang, HE Longtao, XIONG Gang, et al. FS-Net: A Flow Sequence Network for Encrypted Traffic Classification[C]// IEEE. IEEE INFOCOM 2019-IEEE Conference On Computer Communications. New York: IEEE, 2019: 1171-1179. |
[30] | WANG Xin, CHENShuhui, SUJinshu. App-Net: A Hybrid Neural Network for Encrypted Mobile Traffic Classification[C]// IEEE. IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). New York: IEEE, 2020: 424-429. |
[31] |
TANG Chaofei, LUKTARHAN N, ZHAO Yuxin. SAAE-DNN: Deep Learning Method on Intrusion Detection[J]. Symmetry, 2020, 12(10): 1695-1699.
doi: 10.3390/sym12101695 URL |
[32] | LIN Kunda, XU Xiaolong, XIAO Fu. MFFusion: A Multi-Level Features Fusion Model for Malicious Traffic Detection Based on Deep Learning[J]. Computer Networks, 2022, 22: 108658-108665. |
[33] |
LAN Jinghong, LIU Xudong, LI Bo, et al. MEMBER: A Multi-Task Learning Model with Hybrid Deep Features for Network Intrusion Detection[J]. Computers & Security, 2022, 123: 102919-102925.
doi: 10.1016/j.cose.2022.102919 URL |
[34] | TAVALLAEE M, BAGHERI E, LU Wei, et al. A Detailed Analysis of the KDD CUP 99 Data Set[C]// IEEE. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. New York: IEEE, 2009: 1-6. |
[35] | SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization[J]. International Conference on Information Systems Security and Privacy, 2018, 1: 108-116. |
[36] | KESKES N, FAKHFAKH S, KANOUN O, et al. High Performance Oversampling Technique Considering Intra-Class and Inter-Class Distances[EB/OL]. (2022-11-02)[2023-06-20]. https://doi.org/10.1002/cpe.6753. |
[37] |
LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Network Traffic Classifier with Convolutional and Recurrent Neural Networks for Internet of Things[J]. IEEE Access, 2017, 5: 18042-18050.
doi: 10.1109/Access.6287639 URL |
[38] | SINHA J, MANOLLAS M. Efficient Deep CNN-BiLSTM Model for Network Intrusion Detection[C]// ACM. Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition. New York: ACM, 2020: 223-231. |
[1] | 杨志鹏, 刘代东, 袁军翼, 魏松杰. 基于自注意力机制的网络局域安全态势融合方法研究[J]. 信息网络安全, 2024, 24(3): 398-410. |
[2] | 张新有, 孙峰, 冯力, 邢焕来. 基于多视图表征的虚假新闻检测[J]. 信息网络安全, 2024, 24(3): 438-448. |
[3] | 余尚戎, 肖景博, 殷琪林, 卢伟. 关注社交异配性的社交机器人检测框架[J]. 信息网络安全, 2024, 24(2): 319-327. |
[4] | 秦中元, 马楠, 余亚聪, 陈立全. 基于双重图神经网络和自编码器的网络异常检测[J]. 信息网络安全, 2023, 23(9): 1-11. |
[5] | 薛羽, 张逸轩. 深层神经网络架构搜索综述[J]. 信息网络安全, 2023, 23(9): 58-74. |
[6] | 许春根, 薛少康, 徐磊, 张盼. 基于安全两方计算的高效神经网络推理协议[J]. 信息网络安全, 2023, 23(7): 22-30. |
[7] | 苑文昕, 陈兴蜀, 朱毅, 曾雪梅. 基于深度学习的HTTP负载隐蔽信道检测方法[J]. 信息网络安全, 2023, 23(7): 53-63. |
[8] | 李晨蔚, 张恒巍, 高伟, 杨博. 基于AdaN自适应梯度优化的图像对抗迁移攻击方法[J]. 信息网络安全, 2023, 23(7): 64-73. |
[9] | 刘宇啸, 陈伟, 张天月, 吴礼发. 基于稀疏自动编码器的可解释性异常流量检测[J]. 信息网络安全, 2023, 23(7): 74-85. |
[10] | 蒋英肇, 陈雷, 闫巧. 基于双通道特征融合的分布式拒绝服务攻击检测算法[J]. 信息网络安全, 2023, 23(7): 86-97. |
[11] | 李志华, 王志豪. 基于LCNN和LSTM混合结构的物联网设备识别方法[J]. 信息网络安全, 2023, 23(6): 43-54. |
[12] | 蒋曾辉, 曾维军, 陈璞, 武士涛. 面向调制识别的对抗样本研究综述[J]. 信息网络安全, 2023, 23(6): 74-90. |
[13] | 赵小林, 王琪瑶, 赵斌, 薛静锋. 基于机器学习的匿名流量分类方法研究[J]. 信息网络安全, 2023, 23(5): 1-10. |
[14] | 陈梓彤, 贾鹏, 刘嘉勇. 基于Siamese架构的恶意软件隐藏函数识别方法[J]. 信息网络安全, 2023, 23(5): 62-75. |
[15] | 赵彩丹, 陈璟乾, 吴志强. 基于多通道联合学习的自动调制识别网络[J]. 信息网络安全, 2023, 23(4): 20-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||