信息网络安全 ›› 2023, Vol. 23 ›› Issue (9): 1-11.doi: 10.3969/j.issn.1671-1122.2023.09.001

• 等级保护 •    下一篇

基于双重图神经网络和自编码器的网络异常检测

秦中元(), 马楠, 余亚聪, 陈立全   

  1. 东南大学网络空间安全学院,南京 211189
  • 收稿日期:2023-06-05 出版日期:2023-09-10 发布日期:2023-09-18
  • 通讯作者: 秦中元 E-mail:zyqin@seu.edu.cn
  • 作者简介:秦中元(1974—),男,河南,副教授,博士,CCF会员,主要研究方向为智能终端安全、人工智能安全和无线网络安全|马楠(2000—),女,江苏,硕士研究生,主要研究方向为网络安全|余亚聪(1997—),男,浙江,硕士研究生,主要研究方向为可信计算、密码学|陈立全(1976—),男,广西,教授,博士,CCF会员,主要研究方向为移动信息安全、物联网系统与安全、云计算和大数据安全
  • 基金资助:
    国家重点研发计划(2020YFE0200600)

Network Anomaly Detection Based on Dual Graph Convolutional Network and Autoencoders

QIN Zhongyuan(), MA Nan, YU Yacong, CHEN Liquan   

  1. School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
  • Received:2023-06-05 Online:2023-09-10 Published:2023-09-18
  • Contact: QIN Zhongyuan E-mail:zyqin@seu.edu.cn

摘要:

图神经网络在网络异常检测领域中的应用大多集中于单点特征的提取,忽略了连续流量之间的关联性的特点,文章提出了一种基于双重图神经网络和自编码器的网络异常检测方法DGCNAE。该方法首先对通信数据进行图构建和子图划分,然后将子图送入两层图卷积神经网络,分别对点和边进行特征提取,最后采用无监督学习方法对划分出的子图进行训练。通过对子图划分时间间隔和迭代次数进行迭代实验,得出效果最佳的子图划分时间间隔和迭代次数,并在3个典型数据集上与已有算法进行对比实验,实验结果表明,该方法具有更高的准确率和泛化能力。

关键词: 异常检测, 图神经网络, 自编码器

Abstract:

Considering the application of graph neural networks in the field of network anomaly detection mostly focused on the extraction of single point features, while ignoring the correlation features between continuous messages. This paper proposed a network anomaly detection method based on dual graph convolutional networks and autoencoders. This method first constructed the graph and divided the subgraph of the communication data, then sent the subgraph into the two-layer graph convolution neural network to extract the features of points and edges respectively, and finally used the unsupervised learning method to train the divided subgraph. In the experimental part, through the iterative experiment on the subgraph division time interval and iteration times, the subgraph division time interval and iteration times with the best effect were obtained. Comparative experiments with traditional algorithms on three data sets showed that our scheme is more accurate and has stronger generalization.

Key words: anomaly detection, graph neural network, autoencoder

中图分类号: