信息网络安全 ›› 2023, Vol. 23 ›› Issue (9): 12-24.doi: 10.3969/j.issn.1671-1122.2023.09.002
收稿日期:
2023-05-25
出版日期:
2023-09-10
发布日期:
2023-09-18
通讯作者:
张雅雯
E-mail:wyyw4ever@qq.com
作者简介:
张玉臣(1977—),男,河南,教授,博士,主要研究方向为网络空间安全、网络态势分析和大数据处理|张雅雯(1996—),女,安徽,硕士研究生,主要研究方向为网络流量分类、网络入侵检测和网络安全管理|吴越(1996—),男,浙江,硕士研究生,主要研究方向为网络安全管理、网络态势感知和辅助决策|李程(1993—),男,河南,硕士研究生,主要研究方向为系统工程项目管理和系统风险评估
基金资助:
ZHANG Yuchen, ZHANG Yawen(), WU Yue, LI Cheng
Received:
2023-05-25
Online:
2023-09-10
Published:
2023-09-18
Contact:
ZHANG Yawen
E-mail:wyyw4ever@qq.com
摘要:
由于网络系统的时变性,时域空间网络流量不稳定并且分离难度高,传统时空网络模型对时空序列数据空间结构的刻画和对时空特征的挖掘不充分。针对上述问题,文章提出一种基于时频图与改进E-GraphSAGE的网络流量特征提取方法。首先以bior1.3小波基函数为势变基底,完成原始流量一维时域向时频域空间的映射变换,通过可视化分析去除噪声频段;然后在E-GraphSAGE模型的内部融合ConvLSTM模型,构建融合时空长期依赖特征的三维特征提取方法;最后获得包含局部和全局信息的时空频三维特征的边缘嵌入信息,解决了传统时空特征提取模型存在的整体信息缺失问题。可视化分析和分类实验结果表明,处理后的流量特征具有更高的稳定性和可分离度。同时,将文章所提方法与其他关联度较高的方法进行比较,结果表明文章所提方法在准确率、精确度、召回率及F1-score上均表现较好。
中图分类号:
张玉臣, 张雅雯, 吴越, 李程. 基于时频图与改进E-GraphSAGE的网络流量特征提取方法[J]. 信息网络安全, 2023, 23(9): 12-24.
ZHANG Yuchen, ZHANG Yawen, WU Yue, LI Cheng. A Method of Feature Extraction for Network Traffic Based on Time-Frequency Diagrams and Improved E-GraphSAGE[J]. Netinfo Security, 2023, 23(9): 12-24.
表4
基于不同流量处理方法的分类器性能比较
数据集 | 方法 | 准确率 | 精确率 | 召回率 | F1-score |
---|---|---|---|---|---|
UNSW-NB15 | 原始流量 | 60.23 | 62.89 | 60.85 | 63.11 |
时频分析模型 | 65.34 | 69.21 | 64.87 | 66.45 | |
流谱理论模型 | 76.47 | 80.11 | 77.05 | 78.55 | |
E-GraphSAGE M | 94.09 | 9606 | 96.69 | 95.19 | |
TPE-GraphSAGE | 96.96 | 97.19 | 97.22 | 95.37 | |
TPS-EGraphSAGE | 97.20 | 97.26 | 97.40 | 96.82 | |
CICIDS2017 | 原始流量 | 70.25 | 68.83 | 70.87 | 69.84 |
时频分析模型 | 72.78 | 69.23 | 72.95 | 71.37 | |
流谱理论模型 | 74.57 | 79.44 | 80.36 | 79.56 | |
E-GraphSAGE M | 94.09 | 96.06 | 96.69 | 95.19 | |
TPE-GraphSAGE | 97.20 | 97.26 | 97.40 | 96.82 | |
TPS-EGraphSAGE | 98.64 | 98.62 | 98.59 | 98.49 |
表5
单个类别加权F1-score结果对比
数据集 | 算法 | 每类加权F1-score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
UNSW-NB15 | E-GraphSAGE M | 98.2 | 12.2 | 0 | 0 | 73.5 | 0 | 21.4 | 7.8 | 0 | 0 |
TPE-GraphSAGE | 99.0 | 30.5 | 22.7 | 9.4 | 53.0 | 0 | 14.4 | 26.1 | 0 | 6.8 | |
TSP-EGraphSAGE | 99.1 | 34.8 | 26.0 | 12.8 | 54.2 | 23.3 | 30.9 | 35.0 | 4.2 | 8.6 | |
CICIDS 2017 | E-GraphSAGE M | 92.3 | 94.3 | 90.1 | 66.3 | 58.2 | 90.3 | 0 | — | — | — |
TPE-GraphSAGE | 95.4 | 97.3 | 92.9 | 97.2 | 62.4 | 91.8 | 0 | — | — | — | |
TSP-EGraphSAGE | 96.6 | 98.6 | 95.1 | 98.1 | 71.8 | 94.3 | 7.6 | — | — | — |
[1] |
ZHANG Surong, BU Youjun, CHEN Bo, et al. Encrypted Traffic Classification Method Based on Multi-Layer Bidirectional SRU and Attention Model[J]. Computer Engineering, 2022, 48(11): 127-136.
doi: 10.19678/j.issn.1000-3428.0063626 |
张稣荣, 卜佑军, 陈博, 等. 基于多层双向SRU与注意力模型的加密流量分类方法[J]. 计算机工程, 2022, 48(11): 127-136.
doi: 10.19678/j.issn.1000-3428.0063626 |
|
[2] | NARGESIAN F, SAMULOWITZ H, KHURANA U, et al. Learning Feature Engineering for Classification[C]// ACM. 26th International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 2529-2535. |
[3] | TANG Jiliang, ALELYANI S, LIU Huan. Feature Selection for Classification: A Review[EB/OL]. (2014-01-01)[2023-04-11]. https://www.researchgate.net/publication/288257551_Feature_selection_for_classification_A_review. |
[4] | KHAMMASSI C, KRICHEN S. A GA-LR Wrapper Approach for Feature Selection in Network Intrusion Detection[J]. Computers & Security, 2017(70): 255-277. |
[5] | PACHECO J, BENITEZ V, FÉLIX L. Anomaly Behavior Analysis for IoT Network Nodes[C]// ACM. 3rd International Conference on Future Networks and Distributed Systems. New York: ACM, 2019: 1-6. |
[6] | RATHORE M M, SAEED F, REHMAN A, et al. Intrusion Detection Using Decision Tree Model in High-Speed Environment[C]// IEEE. 2018 International Conference on Soft-Computing and Network Security (ICSNS). New York: IEEE, 2018: 1-4. |
[7] |
BENGIO Y, COURVILLE A, VINCENT P. Representation Learning: A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
doi: 10.1109/TPAMI.2013.50 pmid: 23787338 |
[8] | LO W W, LAYEGHY S, SARHAN M, et al. E-GraphSAGE: A Graph Neural Network Based Intrusion Detection System for IoT[C]// IEEE. NOMS 2022 IEEE/IFIP Network Operations and Management Symposium. New York: IEEE, 2022: 1-9. |
[9] | GUO Shize, WANG Xiaojuan, HE Mingshu, et al. Research on Intelligent Monitoring Technology in Cyberspace Adversarial Defense[J]. Information Security and Communications Privacy, 2021(11): 79-94. |
郭世泽, 王小娟, 何明枢, 等. 网络空间对抗防御中的智能监测技术研究[J]. 信息安全与通信保密, 2021(11): 79-94. | |
[10] | JIANG Weiwei. Graph-Based Deep Learning for Communication Networks: A Survey[J]. Computer Communications, 2022(185): 40-54. |
[11] |
CAI Hongyun, ZHENG V W, CHANG K C C. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
doi: 10.1109/TKDE.69 URL |
[12] | XIAO Qingsai, LIU Jian, WANG Qiuyun, et al. Towards Network Anomaly Detection Using Graph Embedding[C]// Springer. Computational Science-ICCS 2020: 20th International Conference. Berlin: Springer, 2020: 156-169. |
[13] | CHEN Zhaomin, YEO C K, LEE B S, et al. Autoencoder-Based Network Anomaly Detection[C]// IEEE. 2018 Wireless Telecommunications Symposium (WTS). New York: IEEE, 2018: 1-5. |
[14] | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural Message Passing for Quantum Chemistry[J]. International Conference on Machine Learning, 2017(70): 1263-1272. |
[15] | ABDULRAHAMAN M D, ALHASSAN J K. Ensemble Learning Approach for the Enhancement of Performance of Intrusion Detection System[C]// Elsevier. International Conference on Information and Communication Technology and Its Applications (ICTA 2018). Amsterdam: Elsevier, 2018: 1-8. |
[16] |
WANG Yifei, MO Shuang, WU Wenrui, et al. Internal-External Convolutional Networks for Network Intrusion Detection[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(5): 94-100.
doi: 10.13190/j.jbupt.2021-007 |
王艺霏, 莫爽, 吴文睿, 等. 基于内外卷积网络的网络入侵检测[J]. 北京邮电大学学报, 2021, 44(5): 94-100.
doi: 10.13190/j.jbupt.2021-007 |
|
[17] | HAMILTON W L, YING R, LESKOVEC J. Inductive Representation Learning on Large Graphs[J]. Advances in Neural Information Processing Systems, 2017(30): 1025-1035. |
[18] | LAN Jin, LU Jiazhong, WAN Guogao, et al. E-Minbatch GraphSAGE: An Industrial Internet Attack Detection Model[EB/OL]. (2022-07-14)[2023-04-11]. https://dl.acm.org/doi/10.1155/2022/5363764. |
[19] | CHANG Liyan, BRANCO P. Graph-Based Solutions with Residuals for Intrusion Detection: the Modified E-GraphSAGE and E-ResGAT Algorithms[EB/OL]. (2021-11-26)[2023-04-11]. https://arxiv.org/abs/2111.13597. |
[20] | CAVILLE E, LO W W, LAYEGHY S, et al. Anomal-E: A Self-Supervised Network Intrusion Detection System Based on Graph Neural Networks[EB/OL]. (2022-07-14)[2023-04-11]. https://arxiv.org/abs/2207.06819. |
[21] | ZHANG Xin, JIANG Xiaolu, YU Fucai, et al. Application of Time-Frequency Analysis in Classification of P2P Flow[J]. Application Research of Computers, 2015, 32(10): 3078-3082. |
张昕, 蒋晓路, 于富财, 等. 时频分析在P2P网络流分类中的应用研究[J]. 计算机应用研究, 2015, 32(10): 3078-3082. | |
[22] | GUO Shize, LYU Renjian, HE Mingshu, et al. Application of Flow Spectrum Theory in Network Defense[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(3): 19-25. |
郭世泽, 吕仁健, 何明枢, 等. 流谱理论及其在网络防御中的应用[J]. 北京邮电大学学报, 2022, 45(3): 19-25. | |
[23] | WANG Yingjie, XU Guangquan, LI Xing, et al. Identifying Vulnerabilities of SSL/TLS Certificate Verification in Android Apps with Static and Dynamic Analysis[EB/OL]. (2020-04-22)[2023-04-11]. https://www.sciencedirect.com/science/article/abs/pii/S016412122030087X. |
[24] | COHEN L. Time-Frequency Analysis[M]. New Jersey: Control Engineering Practice Prentice Hall, 1995. |
[25] |
COHEN L. Time-Frequency Distributions-A Review[J]. Proceedings of the IEEE, 1989, 77(7): 941-981.
doi: 10.1109/5.30749 URL |
[26] |
DURAK L, ARIKAN O. Short-Time Fourier Transform: Two Fundamental Properties and an Optimal Implementation[J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1231-1242.
doi: 10.1109/TSP.2003.810293 URL |
[27] | ZHANG Dengsheng. Wavelet Transform[EB/OL]. (2019-05-14)[2023-04-11]. https://link.springer.com/chapter/10.1007/978-3-030-17989-2_2. |
[28] | ZHANG Yawen, ZHANG Yuchen, WU Yue, et al. TPE-NIDS: Uses Graph Neural Networks to Detect Malicious Traffic[C]// IEEE. 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). New York: IEEE, 2022: 949-958. |
[29] | MOUSTAFA N, SLAY J. UNSW-NB15: A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB15 Network Data Set)[C]// IEEE. 2015 Military Communications and Information Systems Conference (MilCIS). New York: IEEE, 2015: 1-6. |
[1] | 赵小林, 王琪瑶, 赵斌, 薛静锋. 基于机器学习的匿名流量分类方法研究[J]. 信息网络安全, 2023, 23(5): 1-10. |
[2] | 魏松杰, 李成豪, 沈浩桐, 张文哲. 基于深度森林的网络匿名流量检测方法研究与应用[J]. 信息网络安全, 2022, 22(8): 64-71. |
[3] | 顾兆军, 郝锦涛, 周景贤. 基于改进双线性卷积神经网络的恶意网络流量分类算法[J]. 信息网络安全, 2020, 20(10): 67-74. |
[4] | 康健, 王杰, 李正旭, 张光妲. 物联网中一种基于多种特征提取策略的入侵检测模型[J]. 信息网络安全, 2019, 19(9): 21-25. |
[5] | 李辉, 倪时策, 肖佳, 赵天忠. 面向互联网在线视频评论的情感分类技术[J]. 信息网络安全, 2019, 19(5): 61-68. |
[6] | 王旭东, 余翔湛, 张宏莉. 面向未知协议的流量识别技术研究[J]. 信息网络安全, 2019, 19(10): 74-83. |
[7] | 文伟平, 李经纬, 焦英楠, 李海林. 一种基于随机探测算法和信息聚合的漏洞检测方法[J]. 信息网络安全, 2019, 19(1): 1-7. |
[8] | 鲁刚, 郭荣华, 周颖, 王军. 恶意流量特征提取综述[J]. 信息网络安全, 2018, 18(9): 1-9. |
[9] | 段桂华, 申卓祥, 申东杰, 李智. 一种基于特征提取的有效下载链接识别方案研究[J]. 信息网络安全, 2018, 18(10): 31-36. |
[10] | 魏书宁, 陈幸如, 唐勇, 刘慧. AR-HELM算法在网络流量分类中的应用研究[J]. 信息网络安全, 2018, 18(1): 9-14. |
[11] | 徐燕. 基于数据挖掘的网络链接预测研究[J]. 信息网络安全, 2017, 17(6): 30-34. |
[12] | 高川, 严寒冰, 贾子骁. 基于特征的网络漏洞态势感知方法研究[J]. 信息网络安全, 2016, 16(12): 28-33. |
[13] | 裘玥. 匿名网络的安全监管隐患与信息获取技术研究[J]. 信息网络安全, 2015, 15(9): 106-108. |
[14] | 李旬, 徐剑, 焦英楠, 严寒冰. 基于异常特征的社交网页检测技术研究[J]. 信息网络安全, 2015, 15(5): 41-46. |
[15] | 肖梅, 辛阳. 基于朴素贝叶斯算法的VoIP流量识别技术研究[J]. 信息网络安全, 2015, 15(10): 74-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||