信息网络安全 ›› 2023, Vol. 23 ›› Issue (8): 66-75.doi: 10.3969/j.issn.1671-1122.2023.08.006

• 技术研究 • 上一篇    下一篇

基于对抗性机器学习的网络入侵检测方法研究

沈华, 田晨, 郭森森(), 慕志颖   

  1. 西北工业大学深圳研究院,深圳 518057
  • 收稿日期:2023-01-19 出版日期:2023-08-10 发布日期:2023-08-08
  • 通讯作者: 郭森森 E-mail:guosensen@mail.nwpu.edu.cn
  • 作者简介:沈华(1982—),男,甘肃,高级工程师,博士研究生,主要研究方向为网络空间安全|田晨(1998—),男,陕西,硕士研究生,主要研究方向为网络空间安全|郭森森(1990—),男,河南,博士,主要研究方向为网络空间安全、对抗机器学习|慕志颖(1994—),女,山东,博士研究生,主要研究方向为数据挖掘和社交网络舆论对抗
  • 基金资助:
    国家自然科学基金(62272389)

Research on Adversarial Machine Learning-Based Network Intrusion Detection Method

SHEN Hua, TIAN Chen, GUO Sensen(), MU Zhiying   

  1. Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
  • Received:2023-01-19 Online:2023-08-10 Published:2023-08-08
  • Contact: GUO Sensen E-mail:guosensen@mail.nwpu.edu.cn

摘要:

网络攻击数据中攻击类别多样、数量分布不均等问题,导致现有基于机器学习的网络入侵检测模型对部分攻击类型的泛化能力较弱,并且由于深度学习模型容易受到对抗样本的攻击,使得深度学习模型在网络入侵检测方面的应用存在诸多约束。对此,文章首先提出了基于随机子空间的入侵检测模型—BAVE-ELM(Bat Algorithm Voting Ensemble Extreme Learning Machines),该方法较好地平衡了模型的泛化能力和虚警率;然后,以BAVE-ELM作为一种基分类器,提出了一种基于自适应集成的网络入侵检测系统(Ensemble Adaptive Network Intrusion Detection System,EA-NIDS),通过集成多种类型的机器学习模型,显著提高了检测模型针对各种攻击类型的泛化能力;最后,文章提出了基于对抗性机器学习的网络入侵检测方法,通过在EA-NIDS中引入对抗训练,显著提升了模型在对抗样本攻击下的鲁棒性。实验结果表明,文章所提出的方法有效提高了网络入侵检测的检测性能以及泛化性,并且在不影响模型准确率的前提下,可显著提升基于机器学习的网络入侵检测模型在对抗性环境中的鲁棒性。

关键词: 网络入侵检测, 对抗样本, 自适应集成

Abstract:

The diversity of attack categories and uneven distribution of numbers in network attack data result in the weak generalization ability of existing machine-learning algorithm-based network intrusion detection models for some types of attacks, and the vulnerability of deep learning models to adversarial examples leads to many constraints on the application of deep learning models in network intrusion detection. In this paper, we first proposed a random subspace-based intrusion detection model named BAVE-ELM (Bat Algorithm Voting Ensemble Extreme Learning Machines), which better balanced the generalization ability and false alarm rate of the model. Then, by using BAVE-ELM as a kind of base classifier, an adaptive ensemble-based network intrusion detection model named EA-NIDS (Ensemble Adaptive Network Intrusion Detection System) was proposed, which could significantly enhance the generalization ability of the detection model against various attacks. Finally, we proposed an adversarial machine learning-based network intrusion detection method, which significantly improved the robustness of the model by introducing adversarial training in EA-NIDS. The experimental results indicate that the proposed method can enhance the detection performance and generalization of network intrusion detection effectively, and the robustness of machine learning-based network intrusion detection models against adversarial attacks can be significantly improved without affecting its detection accuracy.

Key words: network intrusion detection, adversarial examples, adaptive ensemble

中图分类号: