信息网络安全 ›› 2023, Vol. 23 ›› Issue (4): 20-29.doi: 10.3969/j.issn.1671-1122.2023.04.003

• 技术研究 • 上一篇    下一篇

基于多通道联合学习的自动调制识别网络

赵彩丹1, 陈璟乾1, 吴志强2,3()   

  1. 1.厦门大学信息学院,厦门 361005
    2.西藏大学信息科技学院,拉萨 850000
    3.北京大学武汉人工智能研究院,武汉 430023
  • 收稿日期:2022-11-17 出版日期:2023-04-10 发布日期:2023-04-18
  • 通讯作者: 吴志强 E-mail:lightnesstibet@163.com
  • 作者简介:赵彩丹(1974—),女,福建,副教授,博士,主要研究方向为无线信号处理、深度学习和无线网络安全|陈璟乾(1999—),男,福建,硕士研究生,主要研究方向为无线信号处理和深度学习|吴志强(1973—),男,北京,教授,博士,主要研究方向为无线信号处理、深度学习和调制编码。
  • 基金资助:
    国家自然科学基金(61971368);国家自然科学基金(61731012);国家自然科学基金委区域创新发展联合基金(U20A20162)

Automatic Modulation Recognition Algorithm Based on Multi-Channel Joint Learning

ZHAO Caidan1, CHEN Jingqian1, WU Zhiqiang2,3()   

  1. 1. School of Information Science and Technology, Xiamen University, Xiamen 361000, China
    2. School of Information Science and Technology, Tibet University, Lhasa 850000, China
    3. Peking University Institute for Artificial Intelligence, Beijing 100871, China
  • Received:2022-11-17 Online:2023-04-10 Published:2023-04-18
  • Contact: WU Zhiqiang E-mail:lightnesstibet@163.com

摘要:

自动调制识别技术不仅可以提高频谱资源的利用率,而且是有效鉴别用户合法身份的方式之一。为进一步提高识别算法的性能,文章考虑幅度和相位特征之间的联系,提出了一种新的非对称多通道联合学习网络。该网络将幅度、相位以及两者的联合矩阵作为多通道输入端,在不改变参数量和计算速度的前提下利用非对称联合学习模块,较好地提取调制信号的幅度和相位中同质和异构特征,来实现自适应调制编码。实验结果表明,与其他深度学习网络相比,文章所提网络在基准开源数据集RadioML2016.10a和RadioML2016.10b上分别实现了91.73%和93.36%的识别精度。

关键词: 深度学习, 自动调制识别, 卷积神经网络, 联合学习

Abstract:

Automatic modulation recognition technology can not only effectively improve the utilization rate of spectrum resources, but is also an effective way to identify illegal users. To further improve the performance of the recognition algorithm, the paper proposed a new asymmetric multichannel joint learning network by considering the connection between amplitude and phase features. The network used the amplitude, phase and the joint matrix of both as multi-channel input to achieve adaptive modulation coding by better extracting homogeneous and heterogeneous features in the amplitude and phase of the modulated signal using an asymmetric joint learning module without changing the number of parameters and computational speed. The experiments results show that the network proposed in the article achieves the highest recognition accuracy of 91.73% and 93.36% on the benchmark open source datasets RadioML2016.10a and RadioML2016.10b, respectively.

Key words: deep learning, modulation recognition, convolutional neural networks, joint learning

中图分类号: