信息网络安全 ›› 2023, Vol. 23 ›› Issue (4): 20-29.doi: 10.3969/j.issn.1671-1122.2023.04.003
收稿日期:
2022-11-17
出版日期:
2023-04-10
发布日期:
2023-04-18
通讯作者:
吴志强
E-mail:lightnesstibet@163.com
作者简介:
赵彩丹(1974—),女,福建,副教授,博士,主要研究方向为无线信号处理、深度学习和无线网络安全|陈璟乾(1999—),男,福建,硕士研究生,主要研究方向为无线信号处理和深度学习|吴志强(1973—),男,北京,教授,博士,主要研究方向为无线信号处理、深度学习和调制编码。
基金资助:
ZHAO Caidan1, CHEN Jingqian1, WU Zhiqiang2,3()
Received:
2022-11-17
Online:
2023-04-10
Published:
2023-04-18
Contact:
WU Zhiqiang
E-mail:lightnesstibet@163.com
摘要:
自动调制识别技术不仅可以提高频谱资源的利用率,而且是有效鉴别用户合法身份的方式之一。为进一步提高识别算法的性能,文章考虑幅度和相位特征之间的联系,提出了一种新的非对称多通道联合学习网络。该网络将幅度、相位以及两者的联合矩阵作为多通道输入端,在不改变参数量和计算速度的前提下利用非对称联合学习模块,较好地提取调制信号的幅度和相位中同质和异构特征,来实现自适应调制编码。实验结果表明,与其他深度学习网络相比,文章所提网络在基准开源数据集RadioML2016.10a和RadioML2016.10b上分别实现了91.73%和93.36%的识别精度。
中图分类号:
赵彩丹, 陈璟乾, 吴志强. 基于多通道联合学习的自动调制识别网络[J]. 信息网络安全, 2023, 23(4): 20-29.
ZHAO Caidan, CHEN Jingqian, WU Zhiqiang. Automatic Modulation Recognition Algorithm Based on Multi-Channel Joint Learning[J]. Netinfo Security, 2023, 23(4): 20-29.
表2
SNR=0 dB时模型在RadioML2016.10a数据集上的性能
网络 调制 方式 | SCRNN | 1DCNN-PF | CNN2 | CLDNN | MCLDNN | LSTM2 | SCRNN | asymmetric-MJLNet |
---|---|---|---|---|---|---|---|---|
8PSK | 84% | 80% | 77% | 82% | 86% | 73% | 84% | 89% |
AM-DSB | 86% | 99% | 99% | 87% | 89% | 93% | 86% | 90% |
AM-SSB | 97% | 98% | 95% | 94% | 92% | 95% | 97% | 93% |
BPSK | 99% | 98% | 98% | 99% | 99% | 94% | 99% | 99% |
CPFSK | 100% | 100% | 98% | 96% | 100% | 99% | 100% | 100% |
GFSK | 99% | 94% | 94% | 93% | 99% | 97% | 99% | 97% |
PAM4 | 98% | 98% | 98% | 97% | 98% | 96% | 98% | 98% |
QAM16 | 52% | 83% | 40% | 40% | 81% | 76% | 52% | 83% |
QAM64 | 55% | 71% | 59% | 63% | 86% | 48% | 55% | 81% |
QPSK | 82% | 95% | 40% | 74% | 96% | 86% | 82% | 97% |
WBFM | 39% | 29% | 24% | 43% | 41% | 33% | 39% | 38% |
[1] |
GUPTA A, JHA R K. A Survey of 5G Network: Architecture and Emerging Technologies[J]. IEEE Access, 2015, 3: 1206-1232.
doi: 10.1109/ACCESS.2015.2461602 URL |
[2] |
WANG Qun, SUN Haijian, HU R Q Y, et al. When Machine Learning Meets Spectrum Sharing Security: Methodologies and Challenges[J]. IEEE Open Journal of the Communications Society, 2022, 3: 176-208.
doi: 10.1109/OJCOMS.2022.3146364 URL |
[3] |
LANZOLLA G, ANDERSON J A. Digital Transformation[J]. Business Strategy Review, 2008, 19(2): 72-76.
doi: 10.1111/j.1467-8616.2008.00539.x URL |
[4] |
ZHANG Lin, XIAO Ming, WU Gang, et al. A Survey of Advanced Techniques for Spectrum Sharing in 5G Networks[J]. IEEE Wireless Communications, 2017, 24(5): 44-51.
doi: 10.1109/MWC.2017.1700069 URL |
[5] | ALARBI A, ALKISHRIWO O A S. Modulation Classification Based on Statistical Features and Artificial Neural Network[C]// IEEE. 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA. New York: IEEE, 2021: 748-751. |
[6] | KIM K, POLYDOROS A. Digital Modulation Classification: The BPSK Versus QPSK Case[C]// IEEE. MILCOM 88, 21st Century Military Communications Conference. New York: IEEE, 1988: 431-436. |
[7] |
JIANG Yuhan, ZOU Yulong, OUYANG Jian, et al. Secrecy Energy Efficiency Optimization for Artificial Noise Aided Physical-Layer Security in OFDM-Based Cognitive Radio Networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11858-11872.
doi: 10.1109/TVT.2018.2876062 URL |
[8] | LI Xiaofan, DONG Fangwei, ZHANG Sha, et al. A Survey on Deep Learning Techniques in Wireless Signal Recognition[J]. Wireless Communications and Mobile Computing, 2019, 179: 1-12. |
[9] |
WALENCZYKOWSKA M, KAWALEC A. Type of Modulation Identification Using Wavelet Transform and Neural Network[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2016, 64(1): 257-261.
doi: 10.1515/bpasts-2016-0028 URL |
[10] |
SWAMI A, SADLER B M. Hierarchical Digital Modulation Classification Using Cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416-429.
doi: 10.1109/26.837045 URL |
[11] | VUCIC D, VUKOTIC S, ERIC M. Cyclic Spectral Analysis of OFDM/OQAM Signals[J]. AEU-International Journal of Electronics and Communications, 2017, 73: 139-143. |
[12] |
OTTER D W, MEDINA J R, KALITA J K. A Survey of the Usages of Deep Learning for Natural Language Processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624.
doi: 10.1109/TNNLS.5962385 URL |
[13] |
KHAN M, SAJJAD M, KWON S. Clustering-Based Speech Emotion Recognition by Incorporating Learned Features and Deep BiLSTM[J]. IEEE Access, 2020, 8: 79861-79875.
doi: 10.1109/Access.6287639 URL |
[14] | O’SHEA T J, CORGAN J, CLANCY T C. Convolutional Radio Modulation Recognition Networks[C]// Springer. International Conference on Engineering Applications of Neural Networks. Berlin:Springer, 2016: 213-226. |
[15] | WEST N E, O'SHEA T. Deep Architectures for Modulation Recognition[C]// IEEE. 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). New York: IEEE, 2017: 1-7. |
[16] |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep Learning Models for Wireless Signal Classification with Distributed Low-Cost Spectrum Sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433-445.
doi: 10.1109/TCCN.2018.2835460 URL |
[17] | PERENDA E, RAJENDRAN S, POLLIN S. Automatic Modulation Classification Using Parallel Fusion of Convolutional Neural Networks[C]// BalkanCom. Third International Balkan Conference on Communications and Networking. Istanbul: BalkanCom, 2019: 469-478. |
[18] |
XU Jialang, LUO Chunbo, PARR G, et al. A Spatiotemporal Multi-Channel Learning Framework for Automatic Modulation Recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629-1632.
doi: 10.1109/LWC.5962382 URL |
[19] |
LIAO Kaisheng, ZHAO Yaodong, GU Jie, et al. Sequential Convolutional Recurrent Neural Networks for Fast Automatic Modulation Classification[J]. IEEE Access, 2021, 9: 27182-27188.
doi: 10.1109/Access.6287639 URL |
[20] |
HUYNH-THE T, PHAM Q V, NGUYEN T V, et al. Automatic Modulation Classification: A Deep Architecture Survey[J]. IEEE Access, 2021, 9: 142950-142971.
doi: 10.1109/ACCESS.2021.3120419 URL |
[21] | LIU Minhao, ZENG Ailing, LAI Q, et al. Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction[EB/OL]. (2021-10-19)[2022-11-05]. https://www.xueshufan.com/publication/3171665133. |
[22] | O'SHEA T J, WEST N. Radio Machine Learning Dataset Generation with GNU Radio[EB/OL]. (2016-09-06)[2022-11-05]. https://pubs.gnuradio.org/index.php/grcon/article/view/11. |
[23] | LAURENS V D M, GEOFFREY H. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2625. |
[1] | 谭柳燕, 阮树骅, 杨敏, 陈兴蜀. 基于深度学习的教育数据分类方法[J]. 信息网络安全, 2023, 23(3): 96-102. |
[2] | 徐占洋, 程洛飞, 程建春, 许小龙. 一种使用Bi-ADMM优化深度学习模型的方案[J]. 信息网络安全, 2023, 23(2): 54-63. |
[3] | 陈得鹏, 刘肖, 崔杰, 仲红. 一种基于双阈值函数的成员推理攻击方法[J]. 信息网络安全, 2023, 23(2): 64-75. |
[4] | 贾凡, 康舒雅, 江为强, 王光涛. 基于NLP及特征融合的漏洞相似性算法评估[J]. 信息网络安全, 2023, 23(1): 18-27. |
[5] | 高博, 陈琳, 严迎建. 基于CNN-MGU的侧信道攻击研究[J]. 信息网络安全, 2022, 22(8): 55-63. |
[6] | 刘光杰, 段锟, 翟江涛, 秦佳禹. 基于多特征融合的移动流量应用识别[J]. 信息网络安全, 2022, 22(7): 18-26. |
[7] | 王浩洋, 李伟, 彭思维, 秦元庆. 一种基于集成学习的列车控制系统入侵检测方法[J]. 信息网络安全, 2022, 22(5): 46-53. |
[8] | 郑耀昊, 王利明, 杨婧. 基于网络结构自动搜索的对抗样本防御方法研究[J]. 信息网络安全, 2022, 22(3): 70-77. |
[9] | 刘峰, 杨成意, 於欣澄, 齐佳音. 面向去中心化双重差分隐私的谱图卷积神经网络[J]. 信息网络安全, 2022, 22(2): 39-46. |
[10] | 郭森森, 王同力, 慕德俊. 基于生成对抗网络与自编码器的网络流量异常检测模型[J]. 信息网络安全, 2022, 22(12): 7-15. |
[11] | 林发鑫, 张健. 虚拟化平台异常行为检测系统的设计与实现[J]. 信息网络安全, 2022, 22(11): 62-67. |
[12] | 张郅, 李欣, 叶乃夫, 胡凯茜. 融合多重风格迁移和对抗样本技术的验证码安全性增强方法[J]. 信息网络安全, 2022, 22(10): 129-135. |
[13] | 高昌锋, 肖延辉, 田华伟. 基于多阶段渐进式神经网络的图像相机指纹提取算法[J]. 信息网络安全, 2022, 22(10): 15-23. |
[14] | 刘家银, 李馥娟, 马卓, 夏玲玲. 基于多尺度卷积神经网络的恶意代码分类方法[J]. 信息网络安全, 2022, 22(10): 31-38. |
[15] | 刘烁, 张兴兰. 基于双重注意力的入侵检测系统[J]. 信息网络安全, 2022, 22(1): 80-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||