信息网络安全 ›› 2022, Vol. 22 ›› Issue (8): 36-43.doi: 10.3969/j.issn.1671-1122.2022.08.005
收稿日期:
2021-11-29
出版日期:
2022-08-10
发布日期:
2022-09-15
通讯作者:
胡玉鹏
E-mail:yphu@hnu.edu.cn
作者简介:
伍麟珺(1982—),女,湖南,博士研究生,主要研究方向为硬件安全、人工智能安全与隐私保护|刘洋(1973—),男,湖南,工程师,硕士,主要研究方向为信息安全|袁涛(1976—),男,湖南,高级工程师,硕士,主要研究方向为大规模集成电路设计及信息安全|胡玉鹏(1981—),男,湖南,教授,博士,主要研究方向为大数据、人工智能、云计算等。
基金资助:
WU Linjun1, LIU Yang2, YUAN Tao3, HU Yupeng1()
Received:
2021-11-29
Online:
2022-08-10
Published:
2022-09-15
Contact:
HU Yupeng
E-mail:yphu@hnu.edu.cn
摘要:
近年来,各向异性磁性材料因良好的随机特性为随机数发生器(Random Number Generator,RNG)等重要的硬件安全原语设计提供了一种新思路。已有的基于磁隧道结(Magnetic Tunnel Junction,MTJ)的随机数发生器方案虽然具有更高的安全性、能效和集成度等优点,但依然无法有效解决输出序列随机性受温度影响的问题。文章提出了非均匀写入法和非固定参考法两种灵活的抗温度干扰的真随机数产生方法。两种方法在提升随机数电路输出随机性的同时尽可能抵消环境温度的干扰。实验结果表明,两种随机数产生方案产生的随机数的香农熵在97%左右,且以较高的通过率(>98.5%)通过美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)测试。
中图分类号:
伍麟珺, 刘洋, 袁涛, 胡玉鹏. 抗温度干扰的STT-MRAM随机数生成器及其安全性分析[J]. 信息网络安全, 2022, 22(8): 36-43.
WU Linjun, LIU Yang, YUAN Tao, HU Yupeng. STT-MRAM Random Number Generator with Anti-Temperature Interference and Security Analysis[J]. Netinfo Security, 2022, 22(8): 36-43.
表2
基于STT-MRAM的随机数产生器方案比较
RNG | NIST 统计数据 | p值 | 通过概率 |
---|---|---|---|
RNG3 | Frequency | 0.461119 | 200/200 |
BlockFrequency | 0.213763 | 195/200 | |
CumulativeSums1 | 0.891582 | 199/200 | |
CumulativeSums2 | 0.432146 | 198/200 | |
Runs | 0.538725 | 197/200 | |
LongestRun | 0.506148 | 199/200 | |
Rank | 0.924973 | 200/200 | |
FFT | 0.74021 | 198/200 | |
RNG6 | Frequency | 0.511566 | 199/200 |
BlockFrequency | 0.366237 | 200/200 | |
CumulativeSums1 | 0.582193 | 200/200 | |
CumulativeSums2 | 0.492417 | 198/200 | |
Runs | 0.354821 | 199/200 | |
LongestRun | 0.499620 | 199/200 | |
Rank | 0.937274 | 197/200 | |
FFT | 0.801549 | 200/200 | |
RNG9 | Frequency | 0.719728 | 199/200 |
BlockFrequency | 0.432392 | 200/200 | |
CumulativeSums1 | 0.879813 | 198/200 | |
CumulativeSums2 | 0.879813 | 199/200 | |
Runs | 0.635793 | 200/200 | |
LongestRun | 0.534076 | 198/200 | |
Rank | 0.918783 | 197/200 | |
FFT | 0.869371 | 200/200 |
[1] |
PETRIE C S, CONNELLY J A. A Noise-Based IC Random Number Generator for Applications in Cryptography[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(5): 615-621.
doi: 10.1109/81.847868 URL |
[2] |
STOJANOVSK I T, KOCAREV L. Chaos-Based Random Number Generators-Part i: Analysis[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(3): 281-288.
doi: 10.1109/81.915385 URL |
[3] | PETRIE C S, CONNELLY J A. Modeling and Simulation of Oscillator Based Random Number Generators[C]// IEEE. International Symposium on Circuits and Systems. New York: IEEE, 1996: 324-327. |
[4] | DANGER J, GUILLEY S, HOOGVORST P. Fast True Random Generator in FPGAs[C]// IEEE. Northeast Workshop on Circuits and Systems. New York: IEEE, 2007: 506-509. |
[5] |
WANG Qian, QU Gang. A Silicon PUF Based Entropy Pump[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 16(3): 402-414.
doi: 10.1109/TDSC.2018.2881695 URL |
[6] | OOSAWA S, KONISHI T, ONIZAWA N, et al. Design of an STT-MTJ Based True Random Number Generator Using Digitally Controlled Probability-Locked Loop[C]//IEEE. 13th International New Circuits and Systems Conference. New York: IEEE, 2015: 1-4. |
[7] | TEHRANIPOOR M, FORTE D, ROSE G S, et al. Security Opportunities in Nano Devices and Emerging Technologies[M]. Boca Raton: CRC Press, 2017. |
[8] | CAMSARI K Y, TORUNBALCI M M, BORDERS W A, et al. Double Free-Layer Magnetic Tunnel Junctions for Probabilistic Bits[J]. Physical Review Applied, 2021, 15(4): 1-10. |
[9] | FU Zhenxiao, TANG Yi, ZHAO Xi, et al. An Overview of Spintronic True Random Number Generator[J]. Frontiers in Physics, 2021, 9: 1-8. |
[10] |
SONG Ming, DUAN Wei, ZHANG Shuai, et al. Power and Area Efficient Stochastic Artificial Neural Networks Using Spin Orbit Torque-Based True Random Number Generator[J]. Applied Physics Letters, 2021, 18(5): 1-6.
doi: 10.1063/1.1653457 URL |
[11] |
AMIRANY A, JAFARI K, MOAIYERI M H. True Random Number Generator for Reliable Hardware Security Modules Based on a Neuromorphic Variation-Tolerant Spintronic Structure[J]. IEEE Transactions on Nanotechnology, 2020, 19: 784-791.
doi: 10.1109/TNANO.2020.3034818 URL |
[12] | FUKUSHIMA A, SEKI T, YAKUSHIJI K, et al. Spin Dice: A Scalable Truly Random Number Generator Based on Spintronics[J]. Applied Physics Express, 2019, 7(8): 5-9, 20. |
[13] | CHEN Huiming, ZHANG Shuai, XU Nuo, et al. Binary and Ternary True Random Number Generators Based on Spin Orbit Torque[C]//IEEE. International Electron Devices Meeting. New York: IEEE, 2018: 3651-3654. |
[14] | QU Yuanzhuo, HAN Jie, COCKBURN B F, et al. A True Random Number Generator Based on Parallel STT-MTJs[C]// IEEE. Design, Automation & Test in Europe Conference & Exhibition. New York: IEEE, 2017: 606-609. |
[15] |
QU Yuanzhuo, COCKBURN B F, HUANG Zhe, et al. Variation Resilient True Random Number Generators Based on Multiple STT-MTJs[J]. IEEE Transactions on Nanotechnology, 2018, 17(6): 1270-1281.
doi: 10.1109/TNANO.2018.2873970 URL |
[16] |
VATAJELU E I, NATALE G D. High-Entropy STT-MTJ-Based TRNG[J]. IEEE Transactions on Very Large-Scale Integration Systems, 2019, 27(2): 491-495.
doi: 10.1109/TVLSI.2018.2879439 URL |
[17] | WANG You, CAI Hao, NAVINER L A B, et al. A Novel Circuit Design of True Random Number Generator Using Magnetic Tunnel Junction[C]// ACM. International Symposium on Nanoscale Architectures. New York: ACM, 2016: 123-128. |
[18] | CHOI W H, LV Yang, KIM J, et al. A Magnetic Tunnel Junction Based True Random Number Generator with Conditional Perturb and Real-Time Output Orobability Tracking[C]//IEEE. International Electron Devices Meeting. New York: IEEE, 2014: 1251-1254. |
[19] | LV Yang, WANG Zhaohao, LI Zuwei, et al. A Spin Orbit Torque Based True Random Number Generator with Real-Time Optimization[C]//IEEE. 18th International Conference on Nanotechnology. New York: IEEE, 2018: 1-4. |
[20] | MUKAIDA S, ONIZAWA N, HANYU T. Design of a Low-Power MTJ-Based True Random Number Generator Using a Multi-Voltage/Current Converter[C]//IEEE. 48th International Symposium on Multiple-Valued Logic. New York: IEEE, 2018: 156-161. |
[21] | PERACH B, KVATINSKY S. STT-ANGIE: Asynchronous True Random Number Generator Using STT-MTJ[C]// IEEE. Proceedings of Design, Automation and Test in Europe Conference and Exhibition. New York: IEEE, 2019: 264-267. |
[22] | EGLER T, DITTMANN H, USEINOV A. Digital Readout Optimization of the Random Resistive States in Magnetic Tunnel Junction[J]. Solid-State Electronics, 2020, 163(6): 1-4. |
[23] | SHANNON C. A Mathematical Theory of Communication[J]. The Bell System Technical Journal, 2001, 5(1): 623-656. |
[24] | KIM J, CHEN An, AEIN B B, et al. A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies[C]// IEEE.2015 IEEE Custom Integrated Circuits Conference (CICC). New York: IEEE, 2015: 1-17. |
[25] |
ONIZAWA N, MUKAIDA S, TAMAKOSHI A, et al. High-Throughput/Low-Energy MTJ-Based True Random Number Generator Using a Multi-Voltage/Current Converter[J]. IEEE Transactions on Very Large-Scale Integration Systems, 2020, 28(10): 2171-2181.
doi: 10.1109/TVLSI.2020.3005413 URL |
[26] |
KIM J, NILI H, TRUONG N D, et al. Nano-Intrinsic True Random Number Generation: A Device to Data Study[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(7): 2615-2626.
doi: 10.1109/TCSI.2019.2895045 URL |
[1] | 张玉健, 刘代富, 童飞. 基于局部图匹配的智能合约重入漏洞检测方法[J]. 信息网络安全, 2022, 22(8): 1-7. |
[2] | 刘芹, 张标, 涂航. 基于twisted Edwards曲线的无证书盲签名方案[J]. 信息网络安全, 2022, 22(8): 19-25. |
[3] | 胡艺, 佘堃. 基于区块链和智能合约的双链车联网系统[J]. 信息网络安全, 2022, 22(8): 26-35. |
[4] | 刘翎翔, 潘祖烈, 李阳, 李宗超. 基于前后端关联性分析的固件漏洞静态定位方法[J]. 信息网络安全, 2022, 22(8): 44-54. |
[5] | 高博, 陈琳, 严迎建. 基于CNN-MGU的侧信道攻击研究[J]. 信息网络安全, 2022, 22(8): 55-63. |
[6] | 魏松杰, 李成豪, 沈浩桐, 张文哲. 基于深度森林的网络匿名流量检测方法研究与应用[J]. 信息网络安全, 2022, 22(8): 64-71. |
[7] | 黄保华, 赵伟宏, 彭丽, 谢统义. 基于MPT索引的高效链上PKI模型[J]. 信息网络安全, 2022, 22(8): 72-80. |
[8] | 佟晓筠, 苏煜粤, 张淼, 王翥. 基于混沌和改进广义Feistel结构的轻量级密码算法[J]. 信息网络安全, 2022, 22(8): 8-18. |
[9] | 顾兆军, 刘婷婷, 高冰, 隋翯. 基于GAN-Cross的工控系统类不平衡数据异常检测[J]. 信息网络安全, 2022, 22(8): 81-89. |
[10] | 刘忻, 李韵宜, 王淼. 一种基于机密计算的联邦学习节点轻量级身份认证协议[J]. 信息网络安全, 2022, 22(7): 37-45. |
[11] | 杨婉霞, 陈帅, 管磊, 杨忠良. 宋词自动生成的信息隐藏算法[J]. 信息网络安全, 2022, 22(7): 46-54. |
[12] | 于成丽, 张阳, 贾世杰. 云环境中数据安全威胁与防护关键技术研究[J]. 信息网络安全, 2022, 22(7): 55-63. |
[13] | 张梦杰, 王剑, 黄恺杰, 杨刚. 一种基于字节波动特征的ROP流量静态检测方法[J]. 信息网络安全, 2022, 22(7): 64-72. |
[14] | KELEKET GOMA Christy Junior Yannick, 易文哲, 王鹃. 一种基于SGX的轻量Fabric链码可信执行环境构建方法[J]. 信息网络安全, 2022, 22(7): 73-83. |
[15] | 傅志彬, 祁树仁, 张玉书, 薛明富. 基于稠密连接的深度修复定位网络[J]. 信息网络安全, 2022, 22(7): 84-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||