信息网络安全 ›› 2022, Vol. 22 ›› Issue (6): 1-8.doi: 10.3969/j.issn.1671-1122.2022.06.001

• 等级保护 • 上一篇    下一篇

基于辅助熵减的神经常微分方程入侵检测模型

张兴兰, 付娟娟()   

  1. 北京工业大学信息学部,北京 100124
  • 收稿日期:2022-02-06 出版日期:2022-06-10 发布日期:2022-06-30
  • 通讯作者: 付娟娟 E-mail:memory1721@163.com
  • 作者简介:张兴兰(1970—),女,山西,教授,博士,主要研究方向为密码学、信息安全|付娟娟(1997—),女,河南,硕士研究生,主要研究方向为深度学习和入侵检测
  • 基金资助:
    国家自然科学基金(61801008)

Auxiliary Entropy Reduction Based Intrusion Detection Model for Ordinary Differential Equations

ZHANG Xinglan, FU Juanjuan()   

  1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2022-02-06 Online:2022-06-10 Published:2022-06-30
  • Contact: FU Juanjuan E-mail:memory1721@163.com

摘要:

为了提高深度学习模型入侵检测任务的检测效率和分类的准确性,文章提出一种基于辅助熵减的神经常微分方程(E-ODENet)入侵检测模型。该入侵检测模型通过参数常微分方程定义连续的隐藏状态,不需要再分层传播梯度与更新参数,减少了内存的消耗,极大地提高了效率。使用信息瓶颈进行特征降维,提取与分类任务相关的主要信息,同时使用标签平滑和熵减损失来提高模型的泛化能力和准确性。在NSL-KDD数据集上进行训练和测试,测试得到的检测准确率为99.76%,证明该模型优于其他入侵检测模型。

关键词: 入侵检测, 熵减损失, 常微分方程, NSL-KDD

Abstract:

In order to improve the detection efficiency and classification accuracy of the intrusion detection task of deep learning model, this paper proposes an intrusion detection model based on the auxiliary entropy subtraction of the divine ordinary differential equation (E-ODEnet). This intrusion detection model defines continuous hidden states by parametric ordinary differential equations, while does not require further hierarchical propagation of gradients with updated parameters, while reducing memory consumption and greatly improving efficiency. Feature dimensionality reduction is performed using information bottlenecks to extract the main information relevant to the classification task, while label smoothing and entropy reduction loss are used to improve the generalization ability and accuracy of the model. This experiment is trained and tested on the NSL-KDD dataset, and the accuracy rate of the experimental result is 99.76%, which is better than other intrusion detection models.

Key words: intrusion detection, entropy, ODEnet, NSL-KDD

中图分类号: