信息网络安全 ›› 2022, Vol. 22 ›› Issue (6): 1-8.doi: 10.3969/j.issn.1671-1122.2022.06.001
收稿日期:
2022-02-06
出版日期:
2022-06-10
发布日期:
2022-06-30
通讯作者:
付娟娟
E-mail:memory1721@163.com
作者简介:
张兴兰(1970—),女,山西,教授,博士,主要研究方向为密码学、信息安全|付娟娟(1997—),女,河南,硕士研究生,主要研究方向为深度学习和入侵检测
基金资助:
Received:
2022-02-06
Online:
2022-06-10
Published:
2022-06-30
Contact:
FU Juanjuan
E-mail:memory1721@163.com
摘要:
为了提高深度学习模型入侵检测任务的检测效率和分类的准确性,文章提出一种基于辅助熵减的神经常微分方程(E-ODENet)入侵检测模型。该入侵检测模型通过参数常微分方程定义连续的隐藏状态,不需要再分层传播梯度与更新参数,减少了内存的消耗,极大地提高了效率。使用信息瓶颈进行特征降维,提取与分类任务相关的主要信息,同时使用标签平滑和熵减损失来提高模型的泛化能力和准确性。在NSL-KDD数据集上进行训练和测试,测试得到的检测准确率为99.76%,证明该模型优于其他入侵检测模型。
中图分类号:
张兴兰, 付娟娟. 基于辅助熵减的神经常微分方程入侵检测模型[J]. 信息网络安全, 2022, 22(6): 1-8.
ZHANG Xinglan, FU Juanjuan. Auxiliary Entropy Reduction Based Intrusion Detection Model for Ordinary Differential Equations[J]. Netinfo Security, 2022, 22(6): 1-8.
[1] | KANG M J, KANG J W, TANG T. Intrusion Detection System Using Deep Neural Network for in-Vehicle Network Security[EB/OL]. [2021-10-28]. https://xueshu.baidu.com/usercenter/paper/show?paperid=345b81696b59762c8cb484998e10a90e. |
[2] | LOUKAS G, VUONG T. Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning[J]. IEEE Access, 2017(6): 3491-3508. |
[3] | KIM J, SHIN N, JO S Y, et al. Method of Intrusion Detection Using Deep Neural Network[C]// IEEE. IEEE International Conference on Big Data and Smart Computing. New York: IEEE, 2017: 313-316. |
[4] | YIN Chuanlong, ZHU Yuefei. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks[J]. IEEE Access, 2017(5): 21954-21961. |
[5] | ZHAO Guangzheng, ZHANG Cuixiao, ZHENG Lijuan. Intrusion Detection Using Deep Belief Network and Probabilistic Neural Network[C]// IEEE. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). New York:IEEE, 2017: 639-642. |
[6] | WU Kehe, CHEN Zuge, LI Wei. A Novel Intrusion Detection Model for a Massive Network Using Convolutional Neural Networks[J]. IEEE Access, 2018(6): 50850-50859. |
[7] |
SHONE N, NGOC T N, PHAI V D, et al. A Deep Learning Approach to Network Intrusion Detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1): 41-50.
doi: 10.1109/TETCI.2017.2772792 URL |
[8] | KASONGO S M, SUN Yanxia. A Deep Learning Method with Filter Based Feature Engineering for Wireless Intrusion Detection System[J]. IEEE Access, 2019(7): 38597-38607. |
[9] | TANG T A, MHAMDI L. Deep Recurrent Neural Network for Intrusion Detectionin SDN-Based Networks[C]// IEEE. IEEE International Conference on Network Softwarization (NetSoft). New York:IEEE, 2018: 202-206. |
[10] | SALAMA M A, EID H F, RAMADAN R A, et al. Hybrid Intelligent Intrusion Detection Scheme[C]// Springer. Online World Conference on Soft Computing in Industrial Applications. Berlin: Springer, 2010: 293-303. |
[11] | ZHANG Yong, CHEN Xu, JIN Lei, et al. Network Intrusion Detection: Based on Deep Hierarchical Network and Original Flow Data[J]. IEEE Access, 2019( 7): 37004-37016. |
[12] | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning[J]. Computer Vision and Pattern Recognition, 2017: 4278-4284. |
[13] | CHEN R T Q. Neural Ordinary Differential Equations[EB/OL]. [2021-10-26]. https://arxiv.org/abs/1806.07366. |
[14] | ALEMI A A. Deep Variational Information Bottleneck[EB/OL]. [2021-10-05]. https://arxiv.org/abs/1612.00410. |
[15] | TAVALLAEE M, BAGHERI E, LU W, et al. A Detailed Analysis of the KDD CUP 99 Data Set[C]// IEEE. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. New York: IEEE, 2009: 1-6. |
[16] | REVATHI S, MALATHI A. A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detection[J]. International Journal of Engineering Research & Technology, 2013, 2(12): 1848-1853. |
[17] |
DIRO A A, CHILAMKURTI N. Distributed Attack Detection Scheme Using Deep Learning Approach for Internet of Things[J]. Future Generations Computer Systems, 2017, 82(5): 761-768.
doi: 10.1016/j.future.2017.08.043 URL |
[18] | GU Jie, LU Shan. An Effective Intrusion Detection Approach Using SVM with Nave Bayes Feature Embedding[EB/OL]. [2021-10-28]. https://xueshu.baidu.com/usercenter/paper/show?paperid=11250ev0nc390vc01y1f0250fu672113. |
[1] | 王浩洋, 李伟, 彭思维, 秦元庆. 一种基于集成学习的列车控制系统入侵检测方法[J]. 信息网络安全, 2022, 22(5): 46-53. |
[2] | 白宏鹏, 邓东旭, 许光全, 周德祥. 基于联邦学习的入侵检测机制研究[J]. 信息网络安全, 2022, 22(1): 46-54. |
[3] | 何红艳, 黄国言, 张炳, 贾大苗. 基于极限树特征递归消除和LightGBM的异常检测模型[J]. 信息网络安全, 2022, 22(1): 64-71. |
[4] | 刘烁, 张兴兰. 基于双重注意力的入侵检测系统[J]. 信息网络安全, 2022, 22(1): 80-86. |
[5] | 李群, 董佳涵, 关志涛, 王超. 一种基于聚类分类的物联网恶意攻击检测方法[J]. 信息网络安全, 2021, 21(8): 82-90. |
[6] | 任涛, 金若辰, 罗咏梅. 融合区块链与联邦学习的网络入侵检测算法[J]. 信息网络安全, 2021, 21(7): 27-34. |
[7] | 杜晔, 王子萌, 黎妹红. 基于优化核极限学习机的工控入侵检测方法[J]. 信息网络安全, 2021, 21(2): 1-9. |
[8] | 王华忠, 程奇. 基于改进鲸鱼算法的工控系统入侵检测研究[J]. 信息网络安全, 2021, 21(2): 53-60. |
[9] | 沈也明, 李贝贝, 刘晓洁, 欧阳远凯. 基于主动学习的工业互联网入侵检测研究[J]. 信息网络安全, 2021, 21(1): 80-87. |
[10] | 李桥, 龙春, 魏金侠, 赵静. 一种基于LMDR和CNN的混合入侵检测模型[J]. 信息网络安全, 2020, 20(9): 117-121. |
[11] | 徐国天. 网络入侵检测中K近邻高速匹配算法研究[J]. 信息网络安全, 2020, 20(8): 71-80. |
[12] | 姜楠, 崔耀辉, 王健, 吴晋超. 基于上下文特征的IDS告警日志攻击场景重建方法[J]. 信息网络安全, 2020, 20(7): 1-10. |
[13] | 张晓宇, 王华忠. 基于改进Border-SMOTE的不平衡数据工业控制系统入侵检测[J]. 信息网络安全, 2020, 20(7): 70-76. |
[14] | 彭中联, 万巍, 荆涛, 魏金侠. 基于改进CGANs的入侵检测方法研究[J]. 信息网络安全, 2020, 20(5): 47-56. |
[15] | 王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 47-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||