信息网络安全 ›› 2021, Vol. 21 ›› Issue (12): 91-101.doi: 10.3969/j.issn.1671-1122.2021.12.013
收稿日期:
2021-09-17
出版日期:
2021-12-10
发布日期:
2022-01-11
通讯作者:
李欣
E-mail:lixin@ppsuc.edu.cn
作者简介:
朱容辰(1996—),男,山东,硕士研究生,主要研究方向为网络安全、风险评估|李欣(1977—),男,江西,副教授,博士,主要研究方向为网络安全|林小暖(1996—),女,山东,硕士,主要研究方向为国际ICT产业与政策、网络安全
基金资助:
ZHU Rongchen1, LI Xin1,2(), LIN Xiaonuan3
Received:
2021-09-17
Online:
2021-12-10
Published:
2022-01-11
Contact:
LI Xin
E-mail:lixin@ppsuc.edu.cn
摘要:
公安视频专网是为视频监控系统联网及应用而建立的专门网络,是提高公安工作效率、辅助侦破案件的利器,有效的安全风险评估可以指导配置安全保护资源并补齐短板。针对公安视频专网的安全风险评估研究不足。文章提出了一种视频专网安全风险评估方法,从视频专网安全态势、安全保护水平、运行安全风险因素、安全事件后果等多维度考虑专网安全风险。借助贝叶斯网络(Bayesian Network,BN)、事件树和模糊集理论细粒度总结风险因素,动态分析并量化风险值。通过情景分析、部分验证与案例研究的方法验证合理性与有效性,验证结果表明,该方法有助于提高公安部门对视频专网的安全风险感知、分析与评估能力。
中图分类号:
朱容辰, 李欣, 林小暖. 基于贝叶斯网络的视频专网安全风险分析方法[J]. 信息网络安全, 2021, 21(12): 91-101.
ZHU Rongchen, LI Xin, LIN Xiaonuan. The Security Risk Analysis Method for Video Private Network Based on Bayesian Network[J]. Netinfo Security, 2021, 21(12): 91-101.
[1] |
LUKO S N. Risk Management Principles and Guidelines[J]. Quality Engineering, 2013, 25(4):451-454.
doi: 10.1080/08982112.2013.814508 URL |
[2] | DUAN Yongcheng. Extraction and Evaluation of Network Security Situation Elements for Video Private Network[D]. Beijing: People’s Public Security University of China, 2020. |
段詠程. 面向视频专网的网络安全态势要素提取与评估[D]. 北京:中国人民公安大学, 2020. | |
[3] | LI Xin, DUAN Yongcheng, HUANG Shuhua, et al. Research on the Construction of Network Security Situation Index System for Video Private Network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9):1625-1634. |
李欣, 段詠程, 黄淑华, 等. 面向视频专网的网络安全态势指标体系的构建研究[J]. 北京航空航天大学学报, 2020, 46(9):1625-1634. | |
[4] | WU Jiansong, XU Shengdi, ZHOU Rui, et al. Scenario Analysis of Mine Water Inrush Hazard Using Bayesian Networks[J]. Safety Science, 2016, 26(89):231-239. |
[5] | ZHANG Chao, WU Jiansong, HU Xiaofeng, et al. A Probabilistic Analysis Model of Oil Pipeline Accidents Based on an Integrated Event-Evolution-Bayesian (EEB) Model[J]. Process Safety and Environmental Protection, 2018, 28(117):694-703. |
[6] |
ZHU Rongchen, LI Xin, HU Xiaofeng, et al. Risk Analysis of Chemical Plant Explosion Accidents Based on Bayesian Network[J]. Sustainability, 2019, 12(1):1-20.
doi: 10.3390/su12010001 URL |
[7] |
ZHANG Yiyi, HU Xiaofeng, BAI Yuchen, et al. Risk Assessment of Gas Leakage from School Laboratories Based on the Bayesian Network[J]. International Journal of Environmental Research and Public Health, 2020, 17(2):426-436.
doi: 10.3390/ijerph17020426 URL |
[8] | LANDUCCI G, ARGENTI F, COZZANI V, et al. Assessment of Attack Likelihood to Support Security Risk Assessment Studies for Chemical Facilities[J]. Process Safety and Environmental Protection, 2017, 27(110):102-114. |
[9] |
PATE-CORNELL M E, GUIKEMA S D. Probabilistic Modeling or Terrorist Threats: A Systems Analysis Approach to Setting Priorities Among Countermeasures[J]. Military Operations Research, 2008, 13(3):89-93.
doi: 10.5711/morj.13.3.89 URL |
[10] | HUSMEIER D. Introduction to Learning Bayesian Networks from Data[M]. Berlin: Springer, 2005. |
[11] | ZHOU Deyu, XU Haiyang, HE Yulan. An Unsupervised Bayesian Modelling Approach for Storyline Detection on News Articles[C]// ACL. 2015 Conference on Empirical Methods in Natural Language Processing, September 17-21, 2015, Lisbon, Portugal. New York: Association for Computational Linguistics, 2015: 1943-1948. |
[12] | WANG Litao, JIA Meisheng, SHI Yi, et al. A Knowledge-based Reasoning Model for Crime Reconstruction and Investigation[J]. Expert Systems with Applications, 2020, 30(159):113-119. |
[13] | WU Jiansong, XU Shengdi, ZHOU Rui, et al. Scenario Analysis of Mine Water Inrush Hazard Using Bayesian Networks[J]. Safety Science, 2016, 26(89):231-239. |
[14] |
ZERROUKI H, SMADI H. Bayesian Belief Network Used in the Chemical and Process Industry: A Review and Application[J]. Journal of Failure Analysis and Prevention, 2017, 17(1):159-165.
doi: 10.1007/s11668-016-0231-x URL |
[15] | LASKEY K B, SUZANNE L, WRIGHT E, et al. Hypothesis Management in Situation-specific Network Construction[EB/OL]. https://arxiv.org/ftp/arxiv/papers/1301/1301.2287.pdf, 2002-07-10. |
[16] |
DEMPSTER A P. Upper and Lower Probabilities Induced by a Multivalued Mapping[J]. Annals of Mathematical Statistics, 1967, 38(2):325-339.
doi: 10.1214/aoms/1177698950 URL |
[17] | LIU Liping, YAGER R R. Classic Works of the Dempster-shafer Theory of Belief Functions[M]. Berlin: Springer, 2008. |
[18] | KLEEMANN J, CELIO E, FÜRST C. Validation Approaches of an Expert-based Bayesian Belief Network in Northern Ghana, West Africa[J]. Ecological Modelling, 2017, 33(365):10-29. |
[19] | KABIR G, BALEK N B C, TESFAMARIAM S. Consequence-based Framework for Buried Infrastructure Systems: A Bayesian Belief Network Model[J]. Reliability Engineering & System Safety, 2018, 17(180):290-301. |
[20] |
KHAKZAD N, MARTINEZ I S, KWON H M, et al. Security Risk Assessment and Management in Chemical Plants: Challenges and New Trends[J]. Process Safety Progress, 2018, 37(2):211-230.
doi: 10.1002/prs.v37.2 URL |
[21] | DUAN Yongcheng, WANG Yuqing, LI Xin, et al. Extraction of Random Forest Network Security Situation Elements Based on RSAR[J]. Netinfo Security, 2019, 19(7):75-81. |
段詠程, 王雨晴, 李欣, 等. 基于RSAR的随机森林网络安全态势要素提取[J]. 信息网络安全, 2019, 19(7):75-81. | |
[22] |
JONES B, JENKINSON I, YANG Z, et al. The Use of Bayesian Network Modelling for Maintenance Planning in a Manufacturing Industry[J]. Reliability Engineering & System Safety, 2010, 95(3):267-277.
doi: 10.1016/j.ress.2009.10.007 URL |
[1] | 罗文华, 张耀文. 基于贝叶斯网络的电信网络诈骗受害人特征分析[J]. 信息网络安全, 2021, 21(12): 25-30. |
[2] | 赵小林, 赵斌, 赵晶晶, 薛静锋. 基于攻击识别的网络安全度量方法研究[J]. 信息网络安全, 2021, 21(11): 17-27. |
[3] | 刘永磊, 金志刚, 郝琨, 张伟龙. 基于STRIDE和模糊综合评价法的移动支付系统风险评估[J]. 信息网络安全, 2020, 20(2): 49-56. |
[4] | 肖彪, 闫宏强, 罗海宁, 李炬成. 基于差分隐私的贝叶斯网络隐私保护算法的改进研究[J]. 信息网络安全, 2020, 20(11): 75-86. |
[5] | 裘玥. 大型体育赛事网络安全风险分析与评估[J]. 信息网络安全, 2019, 19(9): 61-65. |
[6] | 王庆, 屠晨阳, shenjiahui@iie.ac.cn. 侧信道攻击通用框架设计及应用[J]. 信息网络安全, 2017, 17(5): 57-62. |
[7] | 董晓宁, 赵华容, 李殿伟, 王甲生. 基于模糊证据理论的信息系统安全风险评估研究[J]. 信息网络安全, 2017, 17(5): 69-73. |
[8] | 梁智强, 林丹生. 基于电力系统的信息安全风险评估机制研究[J]. 信息网络安全, 2017, 17(4): 86-90. |
[9] | 李涛, 张驰. 基于信息安全等保标准的网络安全风险模型研究[J]. 信息网络安全, 2016, 16(9): 177-183. |
[10] | 尹心明, 胡正梁, 陈国梁, 黄海晔. 基于设备指纹决策树分类的IP视频专网入网检测方案研究[J]. 信息网络安全, 2016, 16(12): 68-73. |
[11] | 滕希龙, 曲海鹏. 基于区间值直觉模糊集相似性的信息安全风险评估方法研究[J]. 信息网络安全, 2015, 15(5): 62-68. |
[12] | 文伟平, 郭荣华, 孟正, 柏皛. 信息安全风险评估关键技术研究与实现[J]. 信息网络安全, 2015, 15(2): 7-8. |
[13] | 何鹏程, 方勇. 一种基于Web日志和网站参数的入侵检测和风险评估模型的研究[J]. 信息网络安全, 2015, 15(1): 61-65. |
[14] | 王星河, 余洋, 夏春和. 面向网络协同防御的动态风险评估模型[J]. 信息网络安全, 2014, 14(9): 39-43. |
[15] | 章恒, 禄凯. 构建云计算环境的安全检查与评估指标体系[J]. 信息网络安全, 2014, 14(9): 115-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||