信息网络安全 ›› 2019, Vol. 19 ›› Issue (2): 1-9.doi: 10.3969/j.issn.1671-1122.2019.02.001

• 等级保护 •    下一篇

基于GAN的网络攻击检测研究综述

傅建明1,2(), 黎琳1, 郑锐1, 苏日古嘎1   

  1. 1.武汉大学国家网络安全学院,湖北武汉 430072
    2.武汉大学空天信息安全与可信计算教育部重点实验室,湖北武汉 430072
  • 收稿日期:2018-09-28 出版日期:2019-02-10 发布日期:2020-05-11
  • 作者简介:

    作者简介:傅建明(1969—),男,湖南,教授,博士,主要研究方向为系统安全、移动安全;黎琳(1996—),女,贵州,硕士研究生,主要研究方向为网络安全;郑锐(1992—),男,河南,博士研究生,主要研究方向为网络安全;苏日古嘎(1993—),女,内蒙古,硕士研究生,主要研究方向为网络安全。

  • 基金资助:
    国家自然科学基金[61373168];国家自然科学基金联合基金[U1636107]

Survey of Network Attack Detection Based on GAN

Jianming FU1,2(), Lin LI1, Rui ZHENG1, Suriguga1   

  1. 1. School of Cyber Science and Engineering, Wuhan University, Wuhan Hubei 430072, China
    2. Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,Wuhan University, Wuhan Hubei 430072, China
  • Received:2018-09-28 Online:2019-02-10 Published:2020-05-11

摘要:

生成式对抗网络(Generative Adversarial Network,GAN)是近年来深度学习领域的一个重大突破,是一个由生成器和判别器共同构成的动态博弈模型。其“生成”和“对抗”的思想获得了广大科研工作者的青睐,满足了多个研究领域的应用需求。受该思想的启发,研究者们将GAN应用到网络安全领域,用于检测网络攻击,帮助构建智能有效的网络安全防护机制。文章介绍了GAN的基本原理、基础结构、理论发展和应用现状,着重从网络攻击样本生成、网络攻击行为检测两大方面研究了其在网络攻击检测领域的应用现状。

关键词: GAN, 生成器, 判别器, 网络攻击, 网络安全

Abstract:

Generative adversarial network (GAN) is a major breakthrough in the field of deep learning in recent years. It is a dynamic game model composed of generator and discriminator. Its ideas of “generation” and “confrontation” have won the favor of the vast number of scientific researchers and met the application needs of many research fields. Inspired by the ideas, researchers applied GAN to the field of network security to detect network attacks and help build an intelligent and effective network security protection mechanism. This paper introduces the basic principle, infrastructure, theoretical development and application status of GAN, and focuses on the application status of GAN in the field of network attack detection from two aspects of network attack sample generation and network attack behavior detection.

Key words: GAN, generator, discriminator, network attack, network security

中图分类号: