信息网络安全 ›› 2024, Vol. 24 ›› Issue (11): 1675-1684.doi: 10.3969/j.issn.1671-1122.2024.11.007
收稿日期:
2024-06-20
出版日期:
2024-11-10
发布日期:
2024-11-21
通讯作者:
丁伟杰 作者简介:
胡文涛(1995—),男,浙江,讲师,博士,主要研究方向为人工智能安全和数据治理|徐靖凯(2002—),男,浙江,本科,主要研究方向为人工智能安全|丁伟杰(1980—),男,河南,教授,博士,主要研究方向为人工智能安全和智慧警务
基金资助:
HU Wentao, XU Jingkai, DING Weijie()
Received:
2024-06-20
Online:
2024-11-10
Published:
2024-11-21
摘要:
当前计算机网络流量异常检测面临缺乏标注信息的挑战,同时用户需要自行选择合适的技术并调整参数,但没有标签可用于交叉验证。为此,文章提出一种基于溯因学习的无监督网络流量异常检测(ABL-ATD)模型。该模型通过自动生成伪标签,并利用演绎与一致性验证生成高质量标签,避免人工干预。ABL-ATD从多种无监督异常检测模型中提取有效信号,并通过验证与修正,可靠区分异常流量和正常流量。实验结果表明,该模型在多个数据集上展现出与使用真实标签训练的监督学习模型相当的准确性。
中图分类号:
胡文涛, 徐靖凯, 丁伟杰. 基于溯因学习的无监督网络流量异常检测[J]. 信息网络安全, 2024, 24(11): 1675-1684.
HU Wentao, XU Jingkai, DING Weijie. Unsupervised Network Traffic Anomaly Detection Based on Abductive Learning[J]. Netinfo Security, 2024, 24(11): 1675-1684.
表2
不同模型实验结果对比
方法 | 数据集 | F1-score | AUC | Precision | Recall |
---|---|---|---|---|---|
隔离森林 | CIC-IDS-2017 | 58% | 72% | 61% | 56% |
UNSW-NB15 | 59% | 74% | 62% | 58% | |
最佳无监督模型 | CIC-IDS-2017 | 65% | 79% | 68% | 64% |
UNSW-NB15 | 69% | 81% | 71% | 67% | |
DAGMM | CIC-IDS-2017 | 73% | 83% | 75% | 72% |
UNSW-NB15 | 78% | 85% | 77% | 76% | |
RFG-HELAD | CIC-IDS-2017 | 82% | 88% | 80% | 78% |
UNSW-NB15 | 83% | 89% | 81% | 79% | |
ABL-ATD | CIC-IDS-2017 | 86% | 91% | 88% | 85% |
UNSW-NB15 | 87% | 93% | 89% | 86% | |
有监督模型(GT) | CIC-IDS-2017 | 92% | 95% | 93% | 91% |
UNSW-NB15 | 94% | 96% | 95% | 93% |
[1] | HE Ke, KIM D D, ASGHAR M R. Adversarial Machine Learning for Network Intrusion Detection Systems: A Comprehensive Survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 538-566. |
[2] | QIN Zhongyuan, MA Nan, YU Yacong, et al. Network Anomaly Detection Based on Dual Graph Convolutional Network and Autoencoders[J]. Netinfo Security, 2023, 23(9): 1-11. |
秦中元, 马楠, 余亚聪, 等. 基于双重图神经网络和自编码器的网络异常检测[J]. 信息网络安全, 2023, 23(9):1-11. | |
[3] | CHANG Zhihao, YU Linzhu, XU Yanchao, et al. Neural Embeddings for KNN Search in Biological Sequence[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2024: 38-45. |
[4] | DAI Wangzhou, XU Qiuling, YU Yang, et al. Bridging Machine Learning and Logical Reasoning by Abductive Learning[C]//ACM. Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York: ACM, 2019: 32-44. |
[5] | LIU F T, TINGKaiming, ZHOU Zhihua. Isolation Forest[C]//IEEE. 2008 Eighth IEEE International Conference on Data Mining. New York: IEEE, 2008: 413-422. |
[6] | BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying Density-Based Local Outliers[C]//ACM. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 93-104. |
[7] | ZHANG Minling, ZHOU Zhihua. ML-KNN: A Lazy Learning Approach to Multi-Label Learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048. |
[8] | HU Wentao, JIANG Dawei, WU Sai, et al. Distributional Constraint Discovery for Intelligent Auditing[J]. Knowledge and Information Systems, 2023, 65(12): 5195-5229. |
[9] | HU Wentao, JIANG Dawei, WU Sai, et al. IceBerg: Deep Generative Modeling for Constraint Discovery and Anomaly Detection[C]//IEEE. 2022 IEEE International Conference on Parallel & Distributed Processing with Applications. New York: IEEE, 2022: 74-81. |
[10] | LIU Yuxiao, CHEN Wei, ZHANG Tianyue, et al. Explainable Anomaly Traffic Detection Based on Sparse Autoencoders[J]. Netinfo Security, 2023, 23(7): 74-85. |
刘宇啸, 陈伟, 张天月, 等. 基于稀疏自动编码器的可解释性异常流量检测[J]. 信息网络安全, 2023, 23(7):74-85. | |
[11] | HAN Qi, QIAN Xin, XU Hongxiang, et al. DM-CNN: Dynamic Multi-Scale Convolutional Neural Network with Uncertainty Quantification for Medical Image Classification[J]. Computers in Biology and Medicine, 2024, 168: 107758. |
[12] | ACHARYA T, ANNAMALAI A, CHOUIKHA M F. Optimizing the Performance of Network Anomaly Detection Using Bidirectional Long Short-Term Memory (Bi-LSTM) and over-Sampling for Imbalance Network Traffic Data[J]. Advances in Science Technology and Engineering Systems Journal, 2023, 8(6): 144-154. |
[13] | YUAN Lining, LI Xin, WANG Xiaodong, et al. Graph Embedding Models: A Survey[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 59-87. |
袁立宁, 李欣, 王晓冬, 等. 图嵌入模型综述[J]. 计算机科学与探索, 2022, 16(1):59-87.
doi: 10.3778/j.issn.1673-9418.2104020 |
|
[14] | FAN Wenfei, HAN Ziyan, WANG Yaoshu, et al. Discovering Top-K Rules Using Subjective and Objective Criteria[J]. Proceedings of the ACM on Management of Data, 2023, 1(1): 1-29. |
[15] | HUANG Qiang, LUO Pingyi, TUNG A K H. A New Sparse Data Clustering Method Based on Frequent Items[J]. Proceedings of the ACM on Management of Data, 2023, 1(1): 29-58. |
[16] | ZONG Bo, SONG Qi, MIN M R, et al. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection[C]//ICLR. InInternational Conference on Learning Representations (ICLR). San Diego: ICLR, 2020: 1-19. |
[17] | DONG Shuqin, ZHANG Bin. Network Traffic Anomaly Detection Method Based on Deep Features Learning[J]. Journal of Electronics & Information Technology, 2020, 42(3): 1-9. |
董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3):1-9. | |
[18] | YE Huanrong, LI Muyuan, JIANG Bo. Research on DGA Malicious Domain Name Detection Method Based on Transfer Learning and Threat Intelligence[J]. Netinfo Security, 2023, 23(10): 8-15. |
叶桓荣, 李牧远, 姜波. 基于迁移学习和威胁情报的DGA恶意域名检测方法研究[J]. 信息网络安全, 2023, 23(10):8-15. | |
[19] |
FU Yu, WANG Kun, DUAN Xueyuan, et al. Survey of Research on Abnormal Traffic Detection for Software Defined Networks[J]. Journal on Communications, 2024, 45(3): 208-226.
doi: 10.11959/j.issn.1000-436x.2024016 |
付钰, 王坤, 段雪源, 等. 面向软件定义网络的异常流量检测研究综述[J]. 通信学报, 2024, 45(3):208-226.
doi: 10.11959/j.issn.1000-436x.2024016 |
|
[20] | ZHANG Yuchen, LI Lianghui, MA Chenyang, et al. A Log Anomaly Detection Method with Variables[J]. Netinfo Security, 2023, 23(10): 16-20. |
张玉臣, 李亮辉, 马辰阳, 等. 一种融合变量的日志异常检测方法[J]. 信息网络安全, 2023, 23(10):16-20. | |
[21] | HU Wentao, JIANG Dawei, WU Sai, et al. Complex Integrity Constraint Discovery: Measuring Trust in Modern Intelligent Railroad Systems[J]. Journal of Zhejiang University-Science A, 2022, 23(10): 832-837. |
[22] | BREVE B, CARUCCIO L, CIRILLO S, et al. IndiBits: Incremental Discovery of Relaxed Functional Dependencies Using Bitwise Similarity[C]//IEEE. 2023 IEEE 39th International Conference on Data Engineering (ICDE). New York: IEEE, 2024: 1393-1405. |
[23] | CAO Lei, YAN Yizhou, WANG Yu, et al. AutoOD: Automatic Outlier Detection[J]. Proceedings of the ACM on Management of Data, 2023, 1(1): 1-27. |
[24] | IMAN S, ARASH H, ALI A. Ghorba-Ni, Intrusion Detection Evaluation Dataset(CICIDS2017)[EB/OL]. (2022-11-29)[2024-05-30]. https://www.unb.ca/cic/datasets/ids-2017.html. |
[25] | ZHONG Ying, WANG Zhiliang, SHI Xingang, et al. RFG-HELAD: A Robust Fine-Grained Network Traffic Anomaly Detection Model Based on Heterogeneous Ensemble Learning[J]. IEEE Transactions on Information Forensics and Security, 2024, 19(1): 5895-5910. |
[1] | 张强, 何俊江, 李汶珊, 李涛. 基于深度度量学习的异常流量检测方法[J]. 信息网络安全, 2024, 24(3): 462-472. |
[2] | 张志强, 暴亚东. 融合RF和CNN的异常流量检测算法[J]. 信息网络安全, 2024, 24(11): 1655-1664. |
[3] | 刘宇啸, 陈伟, 张天月, 吴礼发. 基于稀疏自动编码器的可解释性异常流量检测[J]. 信息网络安全, 2023, 23(7): 74-85. |
[4] | 刘奕, 李建华, 张一瑫, 孟涛. 基于特征属性信息熵的网络异常流量检测方法[J]. 信息网络安全, 2021, 21(2): 78-86. |
[5] | 张浩, 陈龙, 魏志强. 基于数据增强和模型更新的异常流量检测技术[J]. 信息网络安全, 2020, 20(2): 66-74. |
[6] | 陈冠衡, 苏金树. 基于深度神经网络的异常流量检测算法[J]. 信息网络安全, 2019, 19(6): 68-75. |
[7] | 胡洋瑞, 陈兴蜀, 王俊峰, 叶晓鸣. 基于流量行为特征的异常流量检测[J]. 信息网络安全, 2016, 16(11): 45-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||