信息网络安全 ›› 2024, Vol. 24 ›› Issue (11): 1685-1695.doi: 10.3969/j.issn.1671-1122.2024.11.008

• 入选论文 • 上一篇    下一篇

基于多因素解纠缠的用户—兴趣点联合预测

马卓1, 陈东子2(), 何佳涵1, 王群1   

  1. 1.江苏警官学院计算机信息与网络安全系,南京 210031
    2.南京市公安局,南京 210005
  • 收稿日期:2024-07-11 出版日期:2024-11-10 发布日期:2024-11-21
  • 通讯作者: 陈东子 chendz321@hotmail.com
  • 作者简介:马卓(1993—),女,山西,讲师,博士,CCF会员,主要研究方向为信息安全、用户隐私|陈东子(1993—),男,河南,硕士,主要研究方向为网络空间安全|何佳涵(2002—),女,江苏,本科,主要研究方向为网络空间安全|王群(1971—),男,甘肃,教授,博士,CCF杰出会员,主要研究方向为网络空间安全
  • 基金资助:
    国家自然科学基金(62202209)

Joint Prediction for User and Point of Interest Based on Disentangling Influences

MA Zhuo1, CHEN Dongzi2(), HE Jiahan1, WANG Qun1   

  1. 1. Department of Computer Information and Cybersecurity, Jiangsu Police Institute, Nanjing 210031, China
    2. Nanjing Municipal Public Security Bureau, Nanjing 210005, China
  • Received:2024-07-11 Online:2024-11-10 Published:2024-11-21

摘要:

用户—兴趣点预测问题基于在线用户的历史签入记录来判断用户是否会签入特定兴趣点,但用户—兴趣点数据存在长尾分布现象。针对该数据稀疏性问题,一些研究人员将地理效应和地理序列效应通过自监督学习进行解纠缠表示,以提升兴趣点预测任务的可解释性和准确性。文章引入语义序列效应,提出一种改进的解纠缠图嵌入模型,该模型利用兴趣点在地理空间和语义空间的成对约束,基于地理坐标空间和语义类别空间中影响因素的特征表达、特征修正、特征解耦合和多层感知机融合,在地理层面上结合语义层面更好地预测用户对兴趣点的访问情况。实验结果表明,该方法在签入稀疏的数据集上依然能够取得良好的预测效果。

关键词: 兴趣点预测, 自监督解纠缠, 图嵌入, 联合预测

Abstract:

The problem of user-POI prediction, based on the user’s historical check-in records, determines whether a user checks in a specific POI. However, the user-POI data has a long-tail distribution phenomenon. To address this data sparsity challenge, existing work disentangled the geographical neighbor effect and the geographical sequence effect through self-supervised learning to improve the interpretability and accuracy of the POI prediction task. This paper further introduced the semantic sequence effect, and proposed an improved disentangled graph embedding model. The model used the pairwise constraints of point-of-interests in the geographic space and semantic space, and was based on the feature expression, feature modification, feature decoupling and multi-layer perceptron fusion of the influencing factors in the geographic coordinate space and the semantic category space. The geographic level could be combined with the semantic level to better predict the user’s access to the POI. Experimental results show that the proposed method can still achieve good prediction effects on sparse datasets.

Key words: point of interest prediction, self-supervised disentanglement, graph embedding, joint prediction

中图分类号: