信息网络安全 ›› 2024, Vol. 24 ›› Issue (11): 1665-1674.doi: 10.3969/j.issn.1671-1122.2024.11.006

• 入选论文 • 上一篇    下一篇

基于改进加权LeaderRank的目标人员重要度排序算法

夏玲玲1,2, 马卓1,2(), 郭向民1,2, 倪雪莉1,2   

  1. 1.江苏警官学院计算机信息与网络安全系,南京 210031
    2.江苏省电子数据取证分析工程研究中心,南京 210031
  • 收稿日期:2024-08-06 出版日期:2024-11-10 发布日期:2024-11-21
  • 通讯作者: 马卓 mzhuo1993@163.com
  • 作者简介:夏玲玲(1988—),女,江苏,副教授,博士,主要研究方向为犯罪网络分析、虚拟币溯源|马卓(1993—),女,山西,讲师,博士,CCF会员,主要研究方向为信息安全、用户隐私|郭向民(1989—),男,江苏,讲师,硕士,主要研究方向为犯罪网络分析、网络流量分析与异常检测|倪雪莉(1990—),女,江苏,讲师,硕士,主要研究方向为电子数据取证、犯罪网络分析
  • 基金资助:
    国家自然科学基金(62272203);国家自然科学基金(61802155)

Target Personnel Importance Ranking Algorithm Based on Improved Weighted LeaderRank

XIA Lingling1,2, MA Zhuo1,2(), GUO Xiangmin1,2, NI Xueli1,2   

  1. 1. Department of Computer Information and Cyber Security, Jiangsu Police Institute, Nanjing 210031, China
    2. Jiangsu Electronic Data Forensics and Analysis Engineering Research Center, Nanjing 210031, China
  • Received:2024-08-06 Online:2024-11-10 Published:2024-11-21

摘要:

针对当前人工分析复杂人际关系数据时面临的挑战,尤其是对重要个体关联人员重要性评估时存在准确率不足、效率低及成本高等问题,文章综合考量该类人员行为特征和活动规律,基于重点人员的话单数据和加权LeaderRank算法,对通话时长、通话次数、夜间通话频次和联系人中重点人员数量等多因素进行权重分配,提出一种改进的加权LeaderRank算法,并对重点人员的通联关系人重要程度进行排序,筛选出与重要个体具有类似行为模式和活动特性的目标人员。实验结果表明,改进加权LeaderRank算法与经典的影响力节点发现算法如节点度中心性算法、接近中心性算法和介数中心性算法相比,对于通联关系中具有类似行为特征的目标人员的分值更高,能够有效识别通联关系中潜在的、不易察觉的目标人员。

关键词: LeaderRank, 复杂网络分析, 节点重要度排序, 关联挖掘

Abstract:

At present, the manual analysis of complex interpersonal relationship data is faced with challenges, especially the problems of insufficient accuracy, low efficiency and high cost for the importance assessment of important individuals. To solve this problem, this paper comprehensively considered behavioral characteristics and activity rules of this type of personnel, based on call detail records of key personnel and the weighted LeaderRank algorithm, and assigned weight to multiple factors such as call duration, call frequency, night call frequency and the number of key individuals among contacts. As a result, it proposed an improved weighted LeaderRank algorithm to rank the importance of key contacts and screen out target people with similar behavior patterns and activity characteristics as important individuals. The experimental results show that compared with classical influence node discovery algorithms such as the degree centrality algorithm, the closeness centrality algorithm and the betweenness centrality algorithm, the improved weighted LeaderRank algorithm has a higher score for target people with similar behavior characteristics in the communication relationship, and can effectively identify potential and unobserved target people in the communication relationship.

Key words: LeaderRank, complex network analysis, node importance ranking, association mining

中图分类号: