信息网络安全 ›› 2024, Vol. 24 ›› Issue (1): 80-92.doi: 10.3969/j.issn.1671-1122.2024.01.008
收稿日期:
2023-10-27
出版日期:
2024-01-10
发布日期:
2024-01-24
通讯作者:
尹春勇
E-mail:yinchunyong@hotmail.com
作者简介:
尹春勇(1977—),男,山东,教授,博士,主要研究方向为网络空间安全、大数据挖掘、隐私保护、人工智能和新型计算|蒋奕阳(1999—),男,江苏,硕士研究生,CCF会员,主要研究方向为隐私保护和数据挖掘
基金资助:
YIN Chunyong1(), JIANG Yiyang2
Received:
2023-10-27
Online:
2024-01-10
Published:
2024-01-24
Contact:
YIN Chunyong
E-mail:yinchunyong@hotmail.com
摘要:
随着位置感知设备的普及,轨迹数据已广泛应用于现实生活。然而,轨迹数据通常与敏感标签相关联,不当地分享或发布这些数据可能会泄露用户的隐私,且不同数据的敏感程度互异。针对上述问题,文章提出了基于个性化时空聚类的差分隐私轨迹保护模型。首先,针对轨迹中海量时间数据与隐私保护的需要,文章提出模糊均值聚类算法(FCM算法);其次,在空间分割的过程中,通过密度进行聚类,并实现个性化调整隐私预算分配的目的,从而提高数据效用;再次,在轨迹合成阶段,对比真实轨迹数据,选择更具代表性的轨迹;最后,在发布阶段,引入Laplace机制对轨迹数目进行隐私保护。为了验证文章所提出的模型在轨迹效用与隐私保护上的成果,将该模型与另外两种模型在4个阶段上进行了比较。实验结果表明,文章所提出的模型在数据效用方面提升15.45%,在相同隐私预算下,隐私保护强度提升至少35.62%。
中图分类号:
尹春勇, 蒋奕阳. 基于个性化时空聚类的差分隐私轨迹保护模型[J]. 信息网络安全, 2024, 24(1): 80-92.
YIN Chunyong, JIANG Yiyang. Differential Privacy Trajectory Protection Model Based on Personalized Spatiotemporal Clustering[J]. Netinfo Security, 2024, 24(1): 80-92.
表2
轨迹合成信息
新轨迹数据集 | 与新轨迹相似的原始轨迹 | 真实记录数 | 是否异常 |
---|---|---|---|
2 | 否 | ||
1 | 否 | ||
— | 0 | 是 | |
2 | 否 | ||
2 | 否 | ||
— | 0 | 是 | |
4 | 否 | ||
— | 0 | 是 |
[1] | ZHAO Xiaodong, PI Dechang, CHEN Junfu. Novel Trajectory Privacy-Preserving Method Based on Clustering Using Differential Privacy[J]. Expert Systems with Applications, 2020, 149: 3305-3317. |
[2] |
WU Lei, QIN Chengyi, XU Zihui, et al. TCPP: Achieving Privacy-Preserving Trajectory Correlation with Differential Privacy[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 4006-4020.
doi: 10.1109/TIFS.2023.3290486 URL |
[3] | GAZDAG A, LESTYAN S, REMELI M, et al. Privacy Pitfalls of Releasing In-Vehicle Network Data[EB/OL]. (2022-12-09) [2023-10-20]. https://doi.org/10.1016/j.vehcom.2022.100565. |
[4] | MA Tinghuai, DENG Qian, RONG Huan, et al. A Privacy-Preserving Trajectory Data Synthesis Framework Based on Differential Privacy[EB/OL]. (2023-07-25) [2023-10-20]. https://doi.org/10.1016/j.jisa.2023.103550. |
[5] | ZHAO Jia, GAO Ta, ZHANG Jiancheng. Method of Local Differential Privacy Method for High-Dimensional Data Based on Improved Bayesian Network[J]. Netinfo Security, 2023, 23(2): 19-25. |
赵佳, 高塔, 张建成. 基于改进贝叶斯网络的高维数据本地差分隐私方法[J]. 信息网络安全, 2023, 23(2): 19-25. | |
[6] |
SWEENEY L. K-Anonymity: A Model for Protecting Privacy[J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570.
doi: 10.1142/S0218488502001648 URL |
[7] |
SU Bing, HUANG Jiaxuan, MIAO Kelei, et al. K-Anonymity Privacy Protection Algorithm for Multi-Dimensional Data against Skewness and Similarity Attacks[J]. Sensors, 2023, 23(3): 56-68.
doi: 10.3390/s23010056 URL |
[8] | DWORK C. Differential Privacy[C]// Springer. Proccedings of the 33rd International Colloquium on Automata, Languages and Programming. Heirdelberg: Springer, 2006: 1-12. |
[9] | DWORK C. Differential Privacy: A Survey of Results[C]// Springer. International Conference on Theory and Applications of Models of Computation. Heirdelberg: Springer, 2008: 1-19. |
[10] | MCSHERRY F, TALWAR K. Mechanism Design via Differential Privacy[C]// IEEE. 48th Annual IEEE Symposium on Foundations of Computer Science. New York: IEEE, 2007: 94-103. |
[11] | MCSHERRY F, MIRONOV I. Differentially Private Recommender Systems: Building Privacy into the Netflix Prize Contenders[C]// ACM. 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 627-636. |
[12] |
SUN Liping, BAO Shuting, CI Shang, et al. Differential Privacy-Preserving Density Peaks Clustering Based on Shared Near Neighbors Similarity[J]. IEEE Access, 2019, 7: 89427-89440.
doi: 10.1109/ACCESS.2019.2927308 |
[13] |
PARK J, LEE D H. Parallelly Running K-Nearest Neighbor Classification over Semantically Secure Encrypted Data in Outsourced Environments[J]. IEEE Access, 2020, 8: 64617-64633.
doi: 10.1109/Access.6287639 URL |
[14] | YAO Lin, CHEN Zhenyu, HU Haibo, et al. Privacy Preservation for Trajectory Publication Based on Differential Privacy[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(3): 82-91. |
[15] | GU Zhen, ZHANG Guoyin. Trajectory Data Publication Based on Differential Privacy[J]. International Journal of Information Security and Privacy (IJISP), 2023, 17(1): 1-15. |
[16] | LIU Qi, YU Juan, HAN Jianmin, et al. Differentially Private and Utility-Aware Publication of Trajectory Data[EB/OL]. (2021-04-28) [2023-10-20]. https://doi.org/10.1016/j.eswa.2021.115120. |
[17] |
GENG Quan, KAIROUZ P, OH S, et al. The Staircase Mechanism in Differential Privacy[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(7): 1176-1184.
doi: 10.1109/JSTSP.2015.2425831 URL |
[18] |
CAI Sujin, LYU Xin, LI Xin, et al. A Trajectory Released Scheme for the Internet of Vehicles Based on Differential Privacy[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16534-16547.
doi: 10.1109/TITS.2021.3130978 URL |
[19] | LI Hongtao, WANG Yue, GUO Feng, et al. Differential Privacy Location Protection Method Based on the Markov Model[EB/OL]. (2021-07-01) [2023-10-20]. https://doi.org/10.1155/2021/4696455. |
[20] | ZHANG Yaling, LIU Na, WANG Shangping. A Differential Privacy Protecting K-Means Clustering Algorithm Based on Contour Coefficients[J]. PLOS ONE, 2018, 13(11): 58-70. |
[21] |
DING Xiaofeng, YANG Wanlu, CHOO K K R, et al. Privacy Preserving Similarity Joins Using MapReduce[J]. Information Sciences, 2019, 493: 20-33.
doi: 10.1016/j.ins.2019.03.035 |
[22] |
GURSOY M E, LIU Ling, TRUEX S, et al. Differentially Private and Utility Preserving Publication of Trajectory Data[J]. IEEE Transactions on Mobile Computing, 2019, 18(10): 2315-2329.
doi: 10.1109/TMC.7755 URL |
[23] | CHEN Si, FU Anmin, SHEN Jian, et al. RNN-DP: A New Differential Privacy Scheme Base on Recurrent Neural Network for Dynamic Trajectory Privacy Protection[J]. Journal of Network and Computer Applications, 2020, 168: 1036-1048. |
[24] | ZHANG Ziming, XU Xiaolong, XIAO Fu. LGAN-DP: A Novel Differential Private Publication Mechanism of Trajectory Data[J]. Future Generation Computer Systems-The International Journal of Escience, 2023, 141: 692-703. |
[25] | LI Youru, ZHU Zhenfeng, KONG Deqiang, et al. EA-LSTM: Evolutionary Attention-Based LSTM for Time Series Prediction[J]. Knowledge-Based Systems, 2019, 181: 265-277. |
[26] |
CHENG Wenqing, WEN Ruxue, HUANG Haojun, et al. OPTDP: Towards Optimal Personalized Trajectory Differential Privacy for Trajectory Data Publishing[J]. Neurocomputing, 2022, 472: 201-211.
doi: 10.1016/j.neucom.2021.04.137 URL |
[27] | LI Jiachun, CHEN Guoqian. A Personalized Trajectory Privacy Protection Method[J]. Computers & Security, 2021, 108: 131-142. |
[28] | Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Heirdelberg: Springer Science & Business Media, 2013. |
[29] | YUAN Jing, ZHENG Yu, ZHANG Chengyang, et al. T-Drive: Driving Directions Based on Taxi Trajectories[C]// ACM. 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 99-108. |
[30] | YUAN Jing, ZHENG Yu, XIE Xing, et al. Driving with Knowledge from the Physical World[C]// ACM. 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 316-324. |
[31] | HUA Jingyu, GAO Yue, ZHONG Sheng. Differentially Private Publication of General Time-Serial Trajectory Data[C]// IEEE. 2015 IEEE Conference on Computer Communications. New York: IEEE, 2015: 549-557. |
[32] |
CHEN Si, FU Anmin, SU Mang, et al. Trajectory Privacy Protection Scheme Based on Differential Privacy[J]. Journal on Communications, 2021, 42(9): 54-64.
doi: 10.11959/j.issn.1000-436x.2021168 |
陈思, 付安民, 苏铓, 等. 基于差分隐私的轨迹隐私保护方案[J]. 通信学报, 2021, 42(9): 54-64.
doi: 10.11959/j.issn.1000-436x.2021168 |
[1] | 徐茹枝, 戴理朋, 夏迪娅, 杨鑫. 基于联邦学习的中心化差分隐私保护算法研究[J]. 信息网络安全, 2024, 24(1): 69-79. |
[2] | 刘刚, 杨雯莉, 王同礼, 李阳. 基于云联邦的差分隐私保护动态推荐模型[J]. 信息网络安全, 2023, 23(7): 31-43. |
[3] | 陈晶, 彭长根, 谭伟杰, 许德权. 基于差分隐私和秘密共享的多服务器联邦学习方案[J]. 信息网络安全, 2023, 23(7): 98-110. |
[4] | 赵佳, 高塔, 张建成. 基于改进贝叶斯网络的高维数据本地差分隐私方法[J]. 信息网络安全, 2023, 23(2): 19-25. |
[5] | 刘峰, 杨成意, 於欣澄, 齐佳音. 面向去中心化双重差分隐私的谱图卷积神经网络[J]. 信息网络安全, 2022, 22(2): 39-46. |
[6] | 晏燕, 张雄, 冯涛. 大数据统计划分发布的等比差分隐私预算分配方法[J]. 信息网络安全, 2022, 22(11): 24-35. |
[7] | 路宏琳, 王利明. 面向用户的支持用户掉线的联邦学习数据隐私保护方法[J]. 信息网络安全, 2021, 21(3): 64-71. |
[8] | 张佳程, 彭佳, 王雷. 大数据环境下的本地差分隐私图信息收集方法[J]. 信息网络安全, 2020, 20(6): 44-56. |
[9] | 彭长根, 赵园园, 樊玫玫. 基于最大信息系数的主成分分析差分隐私数据发布算法[J]. 信息网络安全, 2020, 20(2): 37-48. |
[10] | 肖彪, 闫宏强, 罗海宁, 李炬成. 基于差分隐私的贝叶斯网络隐私保护算法的改进研究[J]. 信息网络安全, 2020, 20(11): 75-86. |
[11] | 黄保华, 程琪, 袁鸿, 黄丕荣. 基于距离与误差平方和的差分隐私K-means聚类算法[J]. 信息网络安全, 2020, 20(10): 34-40. |
[12] | 蒋辰, 杨庚, 白云璐, 马君梅. 面向隐私保护的频繁项集挖掘算法[J]. 信息网络安全, 2019, 19(4): 73-81. |
[13] | 傅彦铭, 李振铎. 基于拉普拉斯机制的差分隐私保护k-means++聚类算法研究[J]. 信息网络安全, 2019, 19(2): 43-52. |
[14] | 邹建成, 徐淑情. 一种基于几何变换的数字脚印轨迹隐私保护方法研究[J]. 信息网络安全, 2017, 17(6): 1-5. |
[15] | 周凯, 彭长根, 何建琼, 王亚伟. 可证明安全的LBS中连续查询的轨迹隐私保护方案[J]. 信息网络安全, 2017, 17(1): 43-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||