信息网络安全 ›› 2022, Vol. 22 ›› Issue (7): 9-17.doi: 10.3969/j.issn.1671-1122.2022.07.002

• 技术研究 • 上一篇    下一篇

基于双陷门同态加密的决策树分类模型

秦宝东(), 余沛航, 郑东   

  1. 西安邮电大学网络空间安全学院,西安 710121
  • 收稿日期:2022-03-07 出版日期:2022-07-10 发布日期:2022-08-17
  • 通讯作者: 秦宝东 E-mail:qinbaodong@xupt.edu.cn
  • 作者简介:秦宝东(1982—),男,江苏,教授,博士,主要研究方向为公钥密码学|余沛航(1998—),男,陕西,硕士研究生,主要研究方向为机器学习、隐私保护|郑东(1964—),男,山西,教授,博士,主要研究方向为密码学与信息安全
  • 基金资助:
    国家自然科学基金(61872292);国家自然科学基金(62072371);陕西省重点研发计划(2021ZDLGY06-02);青海省基础研究计划(2020-ZJ-701)

Decision Tree Classification Model Based on Double Trapdoor Homomorphic Encryption

QIN Baodong(), YU Peihang, ZHENG Dong   

  1. School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
  • Received:2022-03-07 Online:2022-07-10 Published:2022-08-17
  • Contact: QIN Baodong E-mail:qinbaodong@xupt.edu.cn

摘要:

决策树模型是一种简单易用且高效的分类器,在远程医疗、信用评估、文本分类等领域得到了广泛应用。分类服务提供者通常从客户端获取特征数据,将特征数据输入私有的分类模型,得到分类结果并返回客户端。为了保护客户端数据和决策树模型参数的隐私,文章基于双陷门同态加密技术提出一种安全高效的两方比较协议,并在此基础上设计了一种高效的隐私保护决策树分类模型。在阈值比较阶段,模型使用双陷门同态加密技术加密用户方的特征值和模型提供方的决策树阈值,并以判断两者差值正负的方式进行决策树评估。此外,模型简化了用户密钥管理流程,用户方仅需生成与存储部分公钥。安全性分析表明,该模型具有较高的隐私性。效率分析表明,该模型具有较低的计算开销。

关键词: 机器学习, 决策树, 隐私保护, 同态加密

Abstract:

Decision tree model is a simple and efficient classifier, which has been widely used in telemedicine, credit evaluation, text classification and other fields. Classification service providers usually obtain feature data from the client, input the feature data into the private classification model, get the classification results and return them to the client. In order to protect the privacy of client data and decision tree model parameters, this paper proposed a secure and efficient two-party comparison protocol based on double trapdoor homomorphic encryption technology, and designed an efficient privacy protection decision tree classification model. In the stage of threshold comparison, the model encrypted the user’s eigenvalue and the decision tree threshold of the model provider by using the double notch homomorphic encryption technology, and carried out the evaluation process of the decision tree by judging the positive and negative difference between them. In addition, this model simplified the user key management, and the user only needed to generate and store part of the public key. Security analysis show that this scheme has high privacy. The efficiency analysis shows that this model has low computational overhead.

Key words: machine learning, decision tree, privacy preserving, homomorphic encryption

中图分类号: