信息网络安全 ›› 2021, Vol. 21 ›› Issue (9): 46-51.doi: 10.3969/j.issn.1671-1122.2021.09.007
收稿日期:
2021-04-11
出版日期:
2021-09-10
发布日期:
2021-09-22
通讯作者:
孔凡玉
E-mail:fanyukong@sdu.edu.cn
作者简介:
陶云亭(1989—),男,山东,硕士研究生,主要研究方向为密码学与信息安全|孔凡玉(1978—),男,山东,副教授,博士,主要研究方向为密码学与信息安全|于佳(1976—),男,山东,教授,博士,主要研究方向为密码学与信息安全|徐秋亮(1960—),男,山东,教授,博士,主要研究方向为密码学与安全多方计算
基金资助:
TAO Yunting1, KONG Fanyu1(), YU Jia2, XU Qiuliang1
Received:
2021-04-11
Online:
2021-09-10
Published:
2021-09-22
Contact:
KONG Fanyu
E-mail:fanyukong@sdu.edu.cn
摘要:
量子计算机的迅速发展给传统的RSA密码、ECC等公钥密码体制带来严重的安全威胁。在抗量子公钥密码体制中,基于格的密码体制是重要的研究类型之一,对算法快速实现的研究具有重要意义。快速数论变换算法是格密码体制的核心运算,其运算效率是实现格密码算法的关键。文章主要对格密码体制中的快速数论变换算法的研究进展,特别是近年来在各种CPU平台上的软件实现方法的进展进行分析和综述,对快速数论变换算法在蝶形结构、负包卷积、取模运算等方面的改进算法进行分析和总结。
中图分类号:
陶云亭, 孔凡玉, 于佳, 徐秋亮. 抗量子格密码体制的快速数论变换算法研究综述[J]. 信息网络安全, 2021, 21(9): 46-51.
TAO Yunting, KONG Fanyu, YU Jia, XU Qiuliang. Survey of Number Theoretic Transform Algorithms for Quantum-resistant Lattice-based Cryptography[J]. Netinfo Security, 2021, 21(9): 46-51.
[1] |
ARUTE F, ARYA K, BABBUSH R, et al. Quantum Supremacy Using a Programmable Superconducting Processor[J]. Nature, 2019, 574(7779): 505-510.
doi: 10.1038/s41586-019-1666-5 URL |
[2] |
ZHONG Hansen, WANG Hui, DENG Yuhao, et al. Quantum Computational Advantage Using Photons[J]. Science, 2020, 370(6523): 1460-1463.
doi: 10.1126/science.abe8770 URL |
[3] |
SHOR P W. Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J]. SIAM Review, 1999, 41(2): 303-332.
doi: 10.1137/S0036144598347011 URL |
[4] | ALAGIC G, ALPERIN-SHERIFF J, APON D, et al. Status Report on the Second Round of the NIST Post-quantum Cryptography Standardization Process[R]. US Department of Commerce, NIST, NISTIR 8309, 2020. |
[5] | KATSUMATA S, MATSUDA T, TAKAYASU A. Lattice-based Revocable(hierarchical) IBE with Decryption Key Exposure Resistance[EB/OL]. https://www.sciencedirect.com/science/article/abs/pii/S0304397519307650, 2020-12-12. |
[6] | SUSILO W, DUONG D H, LE H Q. Efficient Post-quantum Identity-based Encryption with Equality Test [C]//IEEE. 26th International Conference on Parallel and Distributed Systems (ICPADS), December 2-4, 2020, Hong Kong, China. New Jersey: IEEE, 2020: 633-640. |
[7] |
CHILLOTTI I, GAMA N, GEORGIEVA M, et al. TFHE: Fast Fully Homomorphic Encryption over the Torus[J]. Journal of Cryptology, 2020, 33(1): 34-91.
doi: 10.1007/s00145-019-09319-x URL |
[8] | WANG Yukun, WANG Mingqiang. A New Fully Homomorphic Signatures from Standard Lattices [C]//Springer. 15th International Conference on Wireless Algorithms, Systems, and Applications, September 13-15, 2020, Qingdao, China. Heidelberg: Spring, 2020: 494-506. |
[9] | LYUBASHEVSKY V, MICCIANCIO D, PEIKERT C, et al. SWIFFT: A Modest Proposal for FFT Hashing [C]//Springer. 15th International Workshop on Fast Software Encryption, February 10-13, 2008, Lausanne, Switzerland. Heidelberg: Spring, 2008: 54-72. |
[10] | HARVEY D, Faster Arithmetic for Number-theoretic Transforms[EB/OL]. https://www.sciencedirect.com/science/article/pii/S0747717113001181, 2020-12-20. |
[11] | LONGA P, NAEHRIG M. Speeding up the Number Theoretic Transform for Faster Ideal Lattice-based Cryptography [C]//Springer. 15th International Conference on Cryptology and Network Security, November 14-16, 2016, Milan, Italy. Heidelberg: Spring, 2016: 124-139. |
[12] | HUA Siliang, ZHANG Huiguo, WANG Shuchang. Optimization and Implementation of Number Theoretical Transform Multiplier Butterfly Operation for Fully Homomorphic Encryption[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1381-1388. |
华斯亮, 张惠国, 王书昶. 用于全同态加密的数论变换乘法蝶形运算优化及实现[J]. 电子与信息学报, 2021, 43(5): 1381-1388. | |
[13] | HE Shiyang, LI Hui, LI Fenghua. A Survey on High-efficiency Hardware Implementation for Lattice-based Cryptosystem[J]. Journal of Cryptologic Research, 2020, 7(1): 1-19. |
[14] | REGEV O. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[J]. Journal of the ACM, 2009, 56(6): 1-40. |
[15] | SZE T W. Schönhage-strassen Algorithm with MapReduce for Multiplying Terabit Integers [C]//ACM. 2011 International Workshop on Symbolic-numeric Computation, June 7-9, 2011, San Jose, California. New York: ACM, 2012: 54-62. |
[16] | ROY S S, VERCAUTEREN F, MENTENS N, et al. Compact Ring-LWE Cryptoprocessor [C]//Springer. 16th International Workshop on Cryptographic Hardware and Embedded Systems, September 23-26, 2014, Busan, South Korea. Heidelberg: Spring, 2014: 371-391. |
[17] | PÖPPELMANN T, ODER T, GÜNEYSU T. High-performance Ideal Lattice-based Cryptography on 8-bit ATxmega microcontrollers [C]//Springer. 4th International Conference on Cryptology and Information Security in Latin America, August 23-26, 2015, Guadalajara, Mexico. Heidelberg: Spring, 2015: 346-365. |
[18] | SHOUP V. Number Theory Library (Version 11.4.4)[EB/OL]. http://www.shoup.net/ntl, 2021-01-11. |
[19] | HART W, NOVOCIN A, BACHMANN T, et al. Fast Library for Number Theory(Version 2.7)[EB/OL]. http://www.flintlib.org, 2021-01-22. |
[20] | AGUILAR-MELCHOR C, BARRIER J, GUELTON S, et al. NFLlib: NTT-based Fast Lattice Library [C]//Springer. Cryptographer’s Track at the RSA Conference 2016, February 29-March 4, 2016, San Francisco, CA, USA. Heidelberg: Spring, 2016: 341-356. |
[21] | DE CLERCQ R, ROY S S, VERCAUTEREN F, et al. Efficient Software Implementation of Ring-LWE Encryption [C]//IEEE. 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), March 9-13, 2015, Grenoble, France. New Jersey: IEEE, 2015: 339-344. |
[22] | LIU Zhe, SEO H, ROY S, et al. Efficient Ring-LWE Encryption on 8-bit AVR Processors [C]//Springer. 17th International Workshop on Cryptographic Hardware and Embedded Systems, September 13-16, 2015, Saint-Malo, France. Heidelberg: Spring, 2015: 663-682. |
[23] | BUCHMANN J, GÖPFERT F, GÜNEYSU T, et al. High-performance and Lightweight Lattice-based Public-key Encryption [C]//ACM. 2nd ACM International Workshop on IoT Privacy, Trust, and Security, May 30, 2016, Xi’an, China. New York: ACM, 2016: 2-9. |
[24] | XU Jiming, WANG Yujian, LIU Juan, et al. A General-purpose Number Theoretic Transform Algorithm for Compact RLWE Cryptoprocessors [C]//IEEE. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification, October 30-November 1, 2020, Xiamen, China. New Jersey: IEEE, 2020: 1-5. |
[25] | YIN Yanzhao, WU Liji, ZHANG Xiangmin, et al. Method to Construct Extension Field for NTT of Polynomial Multiplication with Small Modulus[J]. Journal of Cryptologic Research, 2021, 8(2): 260-272. |
殷彦昭, 乌力吉, 张向民, 等. 一种用于小模数多项式乘法快速数论变换的扩域方法[J]. 密码学报, 2021, 8(2): 260-272. | |
[26] | BOS J W, COSTELLO C, NAEHRIG M, et al. Post-quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem [C]//IEEE. 2015 IEEE Symposium on Security and Privacy, May 18-20, 2015, NW Washington, DC, USA. New Jersey: IEEE, 2015: 553-570. |
[27] | ALKIM E, JAKUBEIT P, SCHWABE P. Newhope on Arm Cortex-m [C]//Springer. 6th International Conference on Security, Privacy, and Applied Cryptography Engineering, December 14-18, 2016, Hyderabad, India. Heidelberg: Spring, 2016: 332-349. |
[28] | YANG Yingshan, GU Xiaozhuo, WANG Bin, et al. Efficient Password-authenticated Key Exchange from RLWE Based on Asymmetric Key Consensus [C]//Springer. 15th International Conference on Information Security and Cryptology, December 4-6, 2019, Seoul, Korea. Heidelberg: Spring, 2019: 31-49. |
[29] | ODER T, PÖPPELMANN T, GÜNEYSU T. Beyond ECDSA and RSA: Lattice-based Digital Signatures on Constrained Devices [C]//IEEE. 51st ACM/EDAC/IEEE Design Automation Conference (DAC), June 1-5, 2014, San Francisco, California, USA. New Jersey: IEEE, 2014: 1-6. |
[30] | DUCAS L, LEPOINT T, LYUBASHEVSKY V, et al. Crystals-dilithium: Digital Signatures from Module Lattices[EB/OL]. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions, 2021-01-22. |
[31] | FOUQUE P A, HOFFSTEIN J, KIRCHNER P. Fast-fourier Lattice-based Compact Signatures over NTRU[EB/OL]. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions, 2021-01-22. |
[1] | 王跃东, 熊焰, 黄文超, 武建双. 一种面向5G专网鉴权协议的形式化分析方案[J]. 信息网络安全, 2021, 21(9): 1-7. |
[2] | 顾兆军, 姚峰, 丁磊, 隋翯. 基于半实物的机场供油自控系统网络安全测试[J]. 信息网络安全, 2021, 21(9): 16-24. |
[3] | 马玲, 覃亮成. 基于DCT-DQFT变换和QR分解的彩色图像盲水印算法[J]. 信息网络安全, 2021, 21(9): 25-31. |
[4] | 孙力. 区块链+在线教育资源联盟信息保护机制研究与应用[J]. 信息网络安全, 2021, 21(9): 32-39. |
[5] | 江皓臻, 江苾菲, 贺朗月, 单亦伟. 基于THD89的智能密码钥匙设计与实现[J]. 信息网络安全, 2021, 21(9): 40-45. |
[6] | 弋晓洋, 张健. 基于图像的网络钓鱼邮件检测方法研究[J]. 信息网络安全, 2021, 21(9): 52-58. |
[7] | 李彦霖, 蔡满春, 芦天亮, 席荣康. 遗传算法优化CNN的网站指纹攻击方法[J]. 信息网络安全, 2021, 21(9): 59-66. |
[8] | 陈庆港, 杜彦辉, 韩奕, 刘翔宇. 基于深度可分离卷积的物联网设备识别模型[J]. 信息网络安全, 2021, 21(9): 67-73. |
[9] | 郑海潇, 文斌. 基于图卷积网络的比特币非法交易识别方法[J]. 信息网络安全, 2021, 21(9): 74-79. |
[10] | 吴克河, 程瑞, 郑碧煌, 崔文超. 电力物联网安全通信协议研究[J]. 信息网络安全, 2021, 21(9): 8-15. |
[11] | 张永棠. 一种基于安全区域的WSN流量分析聚合方法[J]. 信息网络安全, 2021, 21(9): 80-89. |
[12] | 杨晓琪, 白利芳, 唐刚. 基于DSMM模型的数据安全评估模型研究与设计[J]. 信息网络安全, 2021, 21(9): 90-95. |
[13] | 靳姝婷, 何泾沙, 朱娜斐, 潘世佳. 基于本体推理的隐私保护访问控制机制研究[J]. 信息网络安全, 2021, 21(8): 52-61. |
[14] | 鲍亮, 俞少华, 唐晓婷. 基于马尔可夫链的Web业务安全分析预警[J]. 信息网络安全, 2021, 21(8): 91-96. |
[15] | 李群, 董佳涵, 关志涛, 王超. 一种基于聚类分类的物联网恶意攻击检测方法[J]. 信息网络安全, 2021, 21(8): 82-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||