信息网络安全 ›› 2020, Vol. 20 ›› Issue (9): 57-61.doi: 10.3969/j.issn.1671-1122.2020.09.012

• 入选论文 • 上一篇    下一篇

基于HMM的工业控制系统网络安全状态预测与风险评估方法

李世斌1(), 李婧1, 唐刚1, 李艺2   

  1. 1. 中国软件评测中心,北京 100048
    2. 中国信息通信研究院,北京 100191
  • 收稿日期:2020-07-16 出版日期:2020-09-10 发布日期:2020-10-15
  • 通讯作者: 李世斌 E-mail:ustblsb@163.com
  • 作者简介:李世斌(1992—),男,青海,工程师,硕士,主要研究方向为网络空间与工业互联网安全技术|李婧(1988—),女,北京,工程师,硕士,主要研究方向为网络安全技术|唐刚(1981—),男,北京,高级工程师,硕士,主要研究方向为网络安全技术|李艺(1988—),男,山东,工程师,博士,主要研究方向为工业互联网安全
  • 基金资助:
    国家重点研发计划(2018YFB0803505)

Method of Network Security States Prediction and Risk Assessment for Industrial Control System Based on HMM

LI Shibin1(), LI Jing1, TANG Gang1, LI Yi2   

  1. 1. China Software Testing Center, Beijing 100048, China
    2. China Academy of Information and Communications Technology, Beijing 100191, China
  • Received:2020-07-16 Online:2020-09-10 Published:2020-10-15
  • Contact: Shibin LI E-mail:ustblsb@163.com

摘要:

文章通过隐马尔可夫模型(HMM)表征一个工业控制网络攻击场景的风险状态转移关系,通过风险状态与安全告警事件关联概率进行网络风险状态预测。文章定义了网络资产、威胁、脆弱性量化因子及其计算方式,对量化因子归一化处理并用于网络整体风险值分析。文章构建了基于典型4层工业控制系统结构的仿真环境,采用MATLAB对方法进行仿真验证。实验表明,文章方法可用于安全状态及风险值的动态评估过程。

关键词: 工业控制系统, 网络安全状态, 隐马尔可夫模型

Abstract:

In this paper, the Hidden Markov Model is used to characterize the risk state transition relationship of an industrial control network attack scene, and the network risk state is predicted by the correlation probability between the risk state and the security alarm event. This paper defines the quantitative factors of network assets, threats and vulnerability and their calculation methods, normalizes the quantitative factors and applies them to the analysis of the overall risk value of the network. This paper constructs a simulation environment based on the typical four-layer industrial control system structure, and simulates and verifies the method by MATLAB. Experimental results show that the proposed method can be used in the dynamic assessment process of security states and risk value.

Key words: industrial control system, network security state, Hidden Markov Model

中图分类号: