信息网络安全 ›› 2019, Vol. 19 ›› Issue (12): 53-63.doi: 10.3969/j.issn.1671-1122.2019.12.007

• 技术研究 • 上一篇    下一篇

基于设备型号分类和BP神经网络的物联网流量异常检测

杨威超(), 郭渊博, 钟雅, 甄帅辉   

  1. 战略支援部队信息工程大学密码工程学院,河南郑州 450000
  • 收稿日期:2019-08-10 出版日期:2019-12-10 发布日期:2020-05-11
  • 作者简介:

    作者简介:杨威超(1991—),男,河南,硕士研究生,主要研究方向为物联网安全;郭渊博(1975—),男,陕西,教授,博士,主要研究方向为网络攻防对抗;钟雅(1995—),女,湖南,硕士研究生,主要研究方向为网络安全;甄帅辉(1987—),男,河南,硕士研究生,主要研究方向为网络攻防对抗。

  • 基金资助:
    国家自然科学基金[61501515];信息保障技术重点实验室开放课题[614211203010417]

IoT Traffic Anomaly Detection Based on Device Type Identification and BP Neural Network

Weichao YANG(), Yuanbo GUO, Ya ZHONG, Shuaihui ZHEN   

  1. School of Crytography, Information Engineering University, Zhengzhou Henan 450000, China
  • Received:2019-08-10 Online:2019-12-10 Published:2020-05-11

摘要:

物联网的快速发展,带来的安全威胁层出不穷,尤其是攻击者利用设备漏洞事先入侵潜伏,进而发动网络攻击的例子屡见不鲜。为了有效地应对物联网安全威胁,结合物联网系统的特点,文章设计了基于设备型号的流量异常检测模型,模型采用设置阻尼时间窗口的方法提取时间统计特征并构建指纹,然后根据设备类型对指纹进行分类,最后用主成分分析法对特征进行降维并用BP神经网络算法进行异常检测的训练和识别。为进一步验证设备型号分类对异常检测效果的贡献,文章比较了随机森林、支持向量机方法在检测中的效果并对实验结果进行了评估,结果表明,基于设备型号的异常检测准确度能够提高10%左右,BP神经网络具有最好的检测效果,检出率平均达到90%以上。

关键词: 异常检测, 设备型号分类, BP神经网络, 主成分分析, 阻尼时间窗口

Abstract:

The rapid development of the Internet of Things has brought about numerous security threats. In particular, it is not uncommon for an attacker to use a device vulnerability to invade a device in advance and launch a network attack. In order to effectively deal with the security threat of the Internet of Things, combined with the characteristics of the Internet of Things system, In this paper, the traffic anomaly detection model based on the device model is designed. The model uses the method of setting the damped time window to extract the time statistical features and construct the fingerprint. Then the fingerprint is classified according to the device type. Finally, the principal component analysis method is used to reduce the features and use BP neural network algorithm for training and identification of anomaly detection. In order to further verify the contribution of equipment model classification to anomaly detection, this paper compares the effects of random forest, support vector machine in detection and evaluates the experimental results. The results show that the accuracy of anomaly detection based on equipment model can be increased by 10%. BP neural network has the best detection effect, with an average of more than 90%.

Key words: anomaly detection, device type identification, BP neural network, principal component analysis, damped time window

中图分类号: